
July 11, 2017

1 of 20

JavaBeans™ Activation

Framework Specification

Version 1.2

Bart Calder, Bill Shannon

The JavaBeans™ Activation Framework

Specification is a data typing and registry

technology that is a Standard Extension to

the Java™ Platform.

2 of 20

Specification: JSR-925 JavaBeans(TM) Activation Framework Specification ("Specification")

Version: 1.2

Status: Final Release

Specification Lead: Oracle America, Inc. ("Specification Lead")

Release: July 2017

Copyright 2006, 2017 Oracle America, Inc.

All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Specification Lead hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without

the right to sublicense), under Specification Lead’s applicable intellectual property rights to view, download, use and reproduce the Specification only for

the purpose of internal evaluation. This includes (i) developing applications intended to run on an implementation of the Specification, provided that such

applications do not themselves implement any portion(s) of the Specification, and (ii) discussing the Specification with any third party; and (iii) excerpting

brief portions of the Specification in oral or written communications which discuss the Specification provided that such excerpts do not in the aggregate

constitute a significant portion of the Specification.

2. License for the Distribution of Compliant Implementations. Specification Lead also grants you a perpetual, non-exclusive, non-transferable, worldwide,

fully paid-up, royalty free, limited license (without the right to sublicense) under any applicable copyrights or, subject to the provisions of subsection 4

below, patent rights it may have covering the Specification to create and/or distribute an Independent Implementation of the Specification that: (a) fully

implements the Specification including all its required interfaces and functionality; (b) does not modify, subset, superset or otherwise extend the Licensor

Name Space, or include any public or protected packages, classes, Java interfaces, fields or methods within the Licensor Name Space other than those

required/authorized by the Specification or Specifications being implemented; and (c) passes the Technology Compatibility Kit (including satisfying the

requirements of the applicable TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the foregoing license is expressly

conditioned on your not acting outside its scope. No license is granted hereunder for any other purpose (including, for example, modifying the Specification,

other than to the extent of your fair use rights, or distributing the Specification to third parties). Also, no right, title, or interest in or to any trademarks,

service marks, or trade names of Specification Lead or Specification Lead’s licensors is granted hereunder. Java, and Java-related logos, marks and names

are trademarks or registered trademarks of Oracle America, Inc. in the U.S. and other countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any other particular "pass through" requirements in any

license You grant concerning the use of your Independent Implementation or products derived from it. However, except with respect to Independent

Implementations (and products derived from them) that satisfy limitations (a)-(c) from the previous paragraph, You may neither: (a) grant or otherwise pass

through to your licensees any licenses under Specification Lead’s applicable intellectual property rights; nor (b) authorize your licensees to make any claims

concerning their implementation’s compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.

a. With respect to any patent claims covered by the license granted under subparagraph 2 above that would be infringed by all technically feasible

implementations of the Specification, such license is conditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking

it from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent rights which are or would be infringed by all technically

feasible implementations of the Specification to develop, distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Specification Lead and covered by the license granted under subparagraph 2, whether or not their

infringement can be avoided in a technically feasible manner when implementing the Specification, such license shall terminate with respect to such claims

if You initiate a claim against Specification Lead that it has, in the course of performing its responsibilities as the Specification Lead, induced any other

entity to infringe Your patent rights.

3 of 20

c Also with respect to any patent claims owned by Specification Lead and covered by the license granted under subparagraph 2 above, where the

infringement of such claims can be avoided in a technically feasible manner when implementing the Specification such license, with respect to such claims,

shall terminate if You initiate a claim against Specification Lead that its making, having made, using, offering to sell, selling or importing a Compliant

Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an implementation of the Specification that neither derives

from any of Specification Lead’s source code or binary code materials nor, except with an appropriate and separate license from Specification Lead,

includes any of Specification Lead’s source code or binary code materials; "Licensor Name Space" shall mean the public class or interface declarations

whose names begin with "java", "javax", "com.oracle", “com.sun” or their equivalents in any subsequent naming convention adopted by Oracle through the

Java Community Process, or any recognized successors or replacements thereof; and "Technology Compatibility Kit" or "TCK" shall mean the test suite and

accompanying TCK User’s Guide provided by Specification Lead which corresponds to the Specification and that was available either (i) from Specification

Lead’s 120 days before the first release of Your Independent Implementation that allows its use for commercial purposes, or (ii) more recently than 120 days

from such release but against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Specification Lead if you breach the Agreement or act outside the scope of the licenses

granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-

INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE

CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not represent any commitment to release or

implement any portion of the Specification in any product. In addition, the Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SPECIFICATION LEAD OR ITS LICENSORS BE LIABLE FOR ANY

DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,

INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR

RELATED IN ANY WAY TO YOUR HAVING, IMPLEMENTING OR OTHERWISE USING THE SPECIFICATION, EVEN IF SPECIFICATION LEAD

AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Specification Lead and its licensors from any claims arising or resulting from: (i) your use of the

Specification; (ii) the use or distribution of your Java application, applet and/or implementation; and/or (iii) any claims that later versions or releases of any

Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or subcontractor

(at any tier), then the Government’s rights in the Software and accompanying documentation shall be only as set forth in this license; this is in accordance

with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD

acquisitions).

REPORT

If you provide Specification Lead with any comments or suggestions concerning the Specification ("Feedback"), you hereby: (i) agree that such Feedback is

provided on a non-proprietary and non-confidential basis, and (ii) grant Specification Lead a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable

license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any

purpose.

GENERAL TERMS

4 of 20

Any action related to this Agreement will be governed by California law and controlling U.S. federal law. The U.N. Convention for the International Sale of

Goods and the choice of law rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations in other countries. Licensee agrees to comply

strictly with all such laws and regulations and acknowledges that it has the responsibility to obtain such licenses to export, re-export or import as may be

required after delivery to Licensee.

This Agreement is the parties’ entire agreement relating to its subject matter. It supersedes all prior or contemporaneous oral or written communications,

proposals, conditions, representations and warranties and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other

communication between the parties relating to its subject matter during the term of this Agreement. No modification to this Agreement will be binding,

unless in writing and signed by an authorized representative of each party.

Overview

5 of 20

1.0 Overview

JavaBeans™ is proving to be a popular technology. As more people embrace

JavaBeans™ and the Java™ platform, some of the environment’s shortcomings are

brought to light. JavaBeans™ was meant to satisfy needs in builder and development

environments but its capabilities fall short of those needed to deploy stand alone

components as content editing and creating entities.

Neither JavaBeans™ nor the Java™ platform define a consistent strategy for typing

data, a method for determining the supported data types of a software component, a

method for binding typed data to a component, or an architecture and implementation

that supports these features.

Presumably with these pieces in place, a developer can write a JavaBeans™ based

component that provides helper application like functionality in a web browser, added

functionality to an office suite, or a content viewer in a Java™ application.

2.0 Goals

This document describes the JavaBeans™ Activation Framework (JAF). The JAF

implements the following services:

• It determines the type of arbitrary data.

• It encapsulates access to data.

• It discovers the operations available on a particular type of data.

• It instantiates the software component that corresponds to the desired operation on a

particular piece of data.

The JAF is packaged as a Standard Extension to the Java™ platform.

3.0 Architectural Overview

The Java™ platform (including JavaBeans™) already provides some support for a

modest activation framework. The JAF leverages as much of that existing technology as

possible. The JAF integrates these mechanisms.

Architectural Overview

6 of 20

This diagram shows the major elements comprising the JAF architecture. Note that the

framework shown here is not bound to a particular application.

3.1 The DataHandler Class

The DataHandler class (shown in the diagram above) provides a consistent interface

between JAF-aware clients and other subsystems.

3.2 The DataSource Interface

DataSource interface encapsulates an object that contains data, and that can return both

a stream providing data access, and a string defining the MIME type describing the data.

Classes can be implemented for common data sources (web, file system, IMAP, ftp,

etc.). The DataSource interface can also be extended to allow per data source user

customizations. Once the DataSource is set in the DataHandler, the client can determine

the operations available on that data.

The JAF includes two DataSource class implementations for convenience:

• FileDataSource accesses data held in a file.

• URLDataSource accesses data held at a URL.

3.3 The CommandMap Interface

The CommandMap provides a service that allows consumers of its interfaces to

determine the ‘commands’ available on a particular MIME type as well as an interface

to retrieve an object that can operate on an object of a particular MIME type (effectively

a component registry). The Command Map can generate and maintain a list of available

capabilities on a particular data type by a mechanism defined by the implementation of

the particular instance of the CommandMap.

The JavaBeans™ package provides the programming model for the software

components that implement the commands. Each JavaBeans™ component can use

DataHandler Command
Map

Command
Object

DataSource DataContentHandler

Framework
Client

Using The Framework

7 of 20

externalization, or can implement the CommandObject interface to allow the typed data

to be passed to it.

The JAF defines the CommandMap interface, which provides a flexible and extensible

framework for the CommandMap. The CommandMap interface allows developers to

develop their own solutions for discovering which commands are available on the

system. A possible implementation can access the ‘types registry’ on the platform or use

a server-based solution. The JAF provides a simple default solution based on RFC 1524

(.mailcap) like functionality. See “Deliverables” below.

3.4 The Command Object Interface

Beans extend the CommandObject interface in order to interact with JAF services. JAF-

aware JavaBeans™ components can directly access their DataSource and DataHandler

objects in order to retrieve the data type and to act on the data.

4.0 Using The Framework

We intend to make this infrastructure widely available for any Java™ Application that

needs this functionality. The ‘canonical’ consumer of this framework accesses it

through the DataHandler (although the major subsystems are designed to also operate

independently). An underlying DataSource object is associated with the DataHandler

when the DataHandler class is constructed.

• The DataHandler retrieves the data typing information from the DataSource or gets

the data type directly from the constructor.

• Once this initialization step is complete, a list of commands that can be performed

on the data item can be accessed from the DataHandler.

When an application issues a request for this list, the DataHandler uses the MIME data

type specifier returned to request a list of available commands from the CommandMap

object. The CommandMap has knowledge of available commands (implemented as

Beans) and their supported data types. The CommandMap returns a subset of the full list

of all commands based on the requested MIME type and the semantics of the

CommandMap implementation, to the DataHandler.

When the application wishes to apply a command to some data, it is accomplished

through the appropriate DataHandler interface, which uses the CommandMap to

retrieve the appropriate Bean that is used to operate on the data. The container (user of

the framework) makes the association between the data and the Bean.

5.0 Usage Scenarios

This scenario uses the example of a hypothetical file viewer application in order to

illustrate the normal flow of tasks involved when implementing the JAF. The file viewer

is similar to the Windows Explorer utility. When launched, it presents the user with a

Usage Scenarios

8 of 20

display of available files. It includes a function like Explorer’s ‘right mouse’ menu,

where all operations that can be performed on a selected data item are listed in a popup

menu for that item.

A typical user launches this application to view a directory of files. When the user

specifies a file by clicking on it, the application displays a popup menu that lists the

available operations on that file. File system viewer utilities normally include ‘edit,’

‘view,’ and ‘print’ commands as available operations. For instance selecting ‘view’

causes the utility to open the selected file in a viewer that can display data of the data

type held in that file.

5.1 Scenario Architecture

Description of tasks performed by the application is broken down into three discrete

steps, for clarity:

• Initialization: The application constructs a view of the file system.

• Getting the Command List: The application presents the command list for a selected

data item.

• Performing the Command: The application performs a command on the selected

data object.

5.2 Initialization

One of the interfaces mentioned below is the ‘DataSource’ object. Recall that the

DataSource object encapsulates the underlying data object in a class that abstracts the

underlying data storage mechanism, and presents its consumers with a common data

access and typing interface. The file viewer application queries the file system for its

contents.

The viewer instantiates a DataSource object for each file in the directory. Then it

instantiates a a DataHandler with the DataSource as its constructor argument. The

DataHandler object provides the client application with access to the CommandMap,

which provides a service that enables access to commands that can operate on the data.

The application maintains a list of the DataHandler objects, queries them for their

names to generate its display.

// for each file in the directory:

File file = new File(file_name);

DataSource ds = new FileDataSource(file);

DataHandler dh = new DataHandler(ds);

5.3 Getting the Command List

Once the application has been initialized and has presented a list of files to the user, the

user can select a file on the list. When the user selects a file, the application displays a

popup menu that lists the available operations on that file.

Usage Scenarios

9 of 20

The application implements this functionality by requesting the list of available

commands from the DataHandler object associated with a file. The DataHandler

retrieves the MIME type of the data from the DataSource object and queries the

CommandMap for operations that are available on that type. The application interprets

the list and presents it to the user on a popup menu. The user then selects one of the

operations from that list.

// get the command list for an object

CommandInfo cmdInfo[] = dh.getPreferredCommands();

PopupMenu popup = new PopupMenu(“Item Menu”);

// populate the popup with available commands

for (i = 0; i < cmdInfo.length; i++)

 popup.add(cmdInfo[i].getCommandName());

// add and show popup

add(popup);

popup.show(x_pos, y_pos);

5.4 Performing a Command

After the user has selected a command from the popup menu, the application uses the

appropriate CommandInfo class to retrieve the Bean that corresponds to the selected

command, and associates the data with that Bean using the appropriate mechanism

(DataHandler, Externalization etc.). Some CommandObjects (viewers for instance) are

subclassed from java.awt.Component and require that they are given a parent container.

Others (like a default print Command) might not present a user interface. This allows

them to be flexible enough to function as stand alone viewer/editors, or perhaps as

components in a compound document system. The ‘application’ is responsible for

providing the proper environment (containment, life cycle, etc.) for the

CommandObject to execute in. We expect that the requirements will be lightweight (not

much beyond JavaBeans™ containers and AWT containment for visible components).

// get the command object

Object cmdBean = cmdInfo[cmd_id].getCommandObject(dh,

 this.getClassLoader());

 ... // use serialization/externalization where appropriate

my_awt_container.add((Component)cmdBean);

5.5 An Alternative Scenario

The first scenario was the ‘canonical’ case. There are also circumstances where the

application has already created objects to represent its data. In this case creating an in-

memory instance of a DataSource that converted an existing object into an InputStream

is an inefficient use of system resources and can result in a loss of data fidelity.

In these cases, the application can instantiate a DataHandler, using the

DataHandler(Object obj, String mimeType) constructor. DataHandler implements the

Transferable interface, so the consuming Bean can request representations other than

Primary Framework Interfaces

10 of 20

InputStreams. The DataHandler also constructs a DataSource for consumers that request

it. The DataContentHandler mechanism is extended to also allow conversion from

Objects to InputStreams.

The following code is an example of a data base front end using the JAF, which

provides query results in terms of objects.

 /**

 * Get the viewer to view my query results:

 */

 Component getQueryViewer(QueryObject qo) throws Exception {

 String mime_type = qo.getType();

 Object q_result = qo.getResultObject();

 DataHandler my_dh = new DataHandler(q_result, mime_type);

 return (Component)my_dh.getCommand(“view”).

 getCommandObject(my_dh, null));

 }

6.0 Primary Framework Interfaces

This section describes interfaces required to implement the JAF architecture introduced

in Section Three.

6.1 The DataSource Interface

The DataSource interface is used by the DataHandler (and possibly other classes

elsewhere) to access the underlying data. The DataSource object encapsulates the

underlying data object in a class that abstracts the underlying data storage and typing

mechanism, and presents its consumers with a common data access interface.

The JAF provides DataSource implementations that support file systems and URLs.

Application system vendors can use the DataSource interface to implement their own

specialized DataSource classes to support IMAP servers, object databases, or other

sources.

There is a one-to-one correspondence between underlying data items (files for instance)

and DataSource objects. Also note that the class that implements the DataSource

interface is responsible for typing the data. To manage a file system, a DataSource can

use a simple mechanism such as a file extension to type data, while a DataSource that

supports incoming web-based data can actually examine the data stream to determine its

type.

6.2 The DataHandler Class

The DataHandler class encapsulates a Data object, and provides methods which act on

that data.

Primary Framework Interfaces

11 of 20

DataHandler encapsulates the type-to-command object binding service of the Command

Map interface for applications. It provides a handle to the operations and data available

on a data element.

DataHandler also implements the Transferable interface. This allows applications and

applets to retrieve alternative representations of the underlying data, in the form of

objects. The DataHandler encapsulates the interface to the component repository and

data source.

Let’s examine these groups of features in more detail:

6.2.1 Data Encapsulation

A DataHandler object can only be instantiated with data. The data can be in the form of

an object implementing the DataSource interface (the preferred way) or as an object

with an associated content type.

Once instantiated, the DataHandler tries to provide its data in a flexible way. The

DataHandler implements the Transferable interface which allows an object to provide

alternative representations of the data. The Transferable interface’s functionality can be

extended via objects implementing the DataContentHandler interface, and then made

available to the DataHandler either by a DataContentHandlerFactory object, or via a

CommandMap.

6.2.2 Command Binding

The DataHandler provides wrappers around commonly used functions for command

discovery. DataHandler has methods that call into the current CommandMap associated

with the DataHandler. By default the DataHandler calls CommandMap’s

getDefaultCommandMap method if no CommandMap was explicitly set. As a

convenience, DataHandler uses the content type of its data when calls are made to the

CommandMap.

6.3 The DataContentHandler Interface

The DataContentHandler interface is implemented by classes that are used by the

DataHandler to convert InputStreams into objects and vice versa. In effect, the

DataHandler object uses a DataContentHandler object to implement the Transferable

interface. DataContentHandlers are discovered via the current CommandMap. A

DataContentHandler uses DataFlavors to represent the data types it can access.

The DataContentHandler also converts data from objects into InputStreams. For

instance, if an application needs to access a .gif file, it passes the file to the image/gif

DataContentHandler. The image/gif DataContentHandler converts the image object into

a gif-formatted byte stream.

Applications will typically need to provide DataContentHandlers for all the MIME

types they intend to support. (Note that the JavaMail reference implementation provides

DataContentHandlers for many of the MIME types used in mail messages.)

Writing Beans for the Framework

12 of 20

6.4 The CommandMap Interface

Once the DataHandler has a MIME type describing the content, it can query the

CommandMap for the operations, or commands that are available for that data type. The

application requests commands available through the DataHandler and specifies a

command on that list. The DataHandler uses the CommandMap to retrieve the Bean

associated with that command. Some or all of the command map is stored in some

‘common’ place, like a .mailcap (RFC 1524) file. Other more complex implementations

can be distributed, or can provide licensing or authentication features.

6.5 The CommandInfo Class

The CommandInfo class is used to represent commands in an underlying registry. From

a CommandInfo object, an application can instantiate the Bean or request the verb

(command) it describes.

6.6 The CommandObject Interface

Beans designed specifically for use with the JAF Architecture should implement the

CommandObject interface. This interface provides direct access to DataHandler

methods and notifies a JAF-aware Bean which verb was used to call it. Upon

instantiation, the Bean takes a string specifying a user-selected command verb, and the

DataHandler object managing the target data. The DataHandler takes a DataSource

object, which provides an input stream linked to that data, and a string specifying the

data type.

6.7 The DataContentHandlerFactory

Like the ContentHandler factory in the java.net package, the

DataContentHandlerFactory is an interface that allows developers to write objects that

map MIME types to DataContentHandlers. The interface is extremely simple, in order

to allow developers as much design and implementation freedom as possible.

7.0 Writing Beans for the Framework

7.1 Overview

This section describes the specification of well-behaved JAF-aware Bean viewers. Note

that this proposal assumes the reader is comfortable with the JavaBeans™

Specification. Developers intending to implement viewer Beans for the JAF should

be familiar with JavaBeans™ concepts and architecture.

7.2 Viewer Goals

1. Make the implementation of viewers and editors as simple as implementing Beans.

That is, require low cost of entry to be a good citizen.

2. Allow developers to have a certain amount of flexibility in their implementations.

Writing Beans for the Framework

13 of 20

7.3 General

We are attempting to limit the amount of extra baggage that needs to be implemented

beyond ‘generic’ Beans. In many cases, JavaBeans™ components that weren’t

developed with knowledge of the framework can be used. The JAF exploits the existing

features of JavaBeans™ and the JDK™, and defines as few additional interfaces and

policies as possible.

We expect that viewers/editors will be bound to data via a simple registry mechanism

similar in function to a .mailcap file. In addition, mailcap format files may be bundled

with components, allowing additional packages to be added at runtime.

Our viewers/editors and related classes and files are encapsulated into JAR files, as is

the preferred method for JavaBeans™. The JAF does not restrict the choice of classes

used to implement a JAF-aware ‘viewer’ Beans, beyond those expected of well-

behaved Beans.

7.4 Interfaces

A viewer Bean that communicates directly with a JAF DataHandler should implement

the CommandObject interface. This interface is small and easy to implement. However,

Beans can still use standard Serialization and Externalization methods available in JDK

1.1 and later versions.

7.5 Storage

The JAF expects applications and viewer Beans to implement storage tasks via the

DataSource object. However; it is possible to use Externalization. A JAF-aware

application can implement the following storage mechanism:

ObjectOutputStream oos = new ObjectOutputStream(

 data_handler.getOutputStream());

my_externalizable_bean.writeExternal(oos);

7.6 Packaging

The basic format for packaging of the Viewer/Editors is the JAR file as described in the

JavaBeans™ Specification. This format allows the convenient packaging of collections

of files that are related to a particular Bean or applet. For more information concerning

integration points, see Section 8.

7.7 Container Support

The JAF is designed to be flexible enough to support the needs of a variety of

applications. The JAF expects these applications to provide the appropriate containers

and life cycle support for these Beans. Beans written for the framework should be

compatible with the guidelines in the JavaBeans™ documentation and should be tested

Framework Integration Points

14 of 20

against the BDK BeanBox (and the JDK Appletviewer if they are subclassed from

Applet).

7.8 Lifecycle

In general the JAF expects that its viewer bean life cycle semantics are the same as

those for all Beans. In the case of Beans that implement the CommandObject interface

we encourage application developers to not parent Beans subclassed from

java.awt.Component to an AWT container until after they have called the

javax.activation.CommandObject.setCommandContext method.

7.9 Command Verbs

The MailcapCommandMap implementation provides a mechanism that allows for an

extensible set of command verbs. Applications using the JAF can query the system for

commands available for a particular MIME type, and retrieve the Bean associated with

that MIME type.

8.0 Framework Integration Points

This section presents several examples that clarify how JavaBeans™ developers can

write Beans that are integrated with the JAF.

First, let’s review the pluggable components of the JavaBeans™ Activation Framework:

• A mechanism that accesses target data where it is stored: DataSource

• A mechanism to convert data objects to and from an external byte stream format:

DataContentHandler

• A mechanism to locate visual components that operate on data objects:

CommandMap

• The visual components that operate on data objects: JAF-aware Beans

As a JavaBeans™ developer, you may build visual Beans. You can also develop

DataContentHandlers to supply data to those Beans. You might also need to develop a

new DataSource or CommandMap class to access data and specify a data type.

8.1 Bean

Suppose you’re building a new Wombat Editor product, with its corresponding Wombat

file format. You’ve built the Wombat Editor as one big Bean. Your WombatBean can do

anything and everything that you might want to do with a Wombat. It can edit, it can

print, it can view, it can save Wombats to files, and it can read Wombats in from files.

You’ve defined a language-independent Wombat file format. You consider the Wombat

data and file formats to be proprietary so you have no need to offer programmatic

interfaces to Wombats beyond what your WombatBean supports.

Framework Integration Points

15 of 20

You’ve chosen the MIME type “application/x-wombat” to describe your Wombat file

format, and you’ve chosen the filename extension “.wom” to be used by files containing

Wombats.

To integrate with the framework, you’ll need some simple wrappers for your

WombatBean for each command you want to implement. For example, for a Print

command wrapper you can write the following code:

public class WombatPrintBean extends WombatBean {

 public WombatPrintBean() {

 super();

 initPrinting();

 }

 }

You will need to create a mailcap file that lists the MIME type “application/x-wombat”

and user visible commands that are supported by your WombatBean. Your

WombatBean wrappers will be listed as the objects supporting each of these commands.

application/x-wombat; ; x-java-view=com.foo.WombatViewBean; \

 x-java-edit=com.foo.WombatEditBean; \

 x-java-print=com.foo.WombatPrintBean

You’ll also need to create a mime.types file with an entry:

type=application/x-wombat desc=”Wombat” exts=wom

All of these components are packaged in a JAR file:

META-INF/mailcap

META-INF/mime.types

com/foo/WombatBean.class

com/foo/WombatEditBean.class

com/foo/WombatViewBean.class

Because everything is built into one Bean, and because no third party programmatic

access to your Wombat objects is required, there’s no need for a DataContentHandler.

Your WombatBean can therefore implement the Externalizable interface instead; and

use its methods to read and write your Wombat files. The DataHandler can call the

Externalizable methods when appropriate.

8.2 Beans

Your Wombat Editor product has really taken off, and you’re now adding significant

new functionality and flexibility to your Wombat Editor. It’s no longer feasible to put

everything into one giant Bean. Instead, you’ve broken the product into a number of

Beans and other components:

• A WombatViewer Bean that can be used to quickly view a Wombat in read-only

mode.

• A WombatEditor Bean that is heavier than the WombatViewer, but also allows

editing.

Framework Integration Points

16 of 20

• A WombatPrinter Bean that simply prints a Wombat.

• A component that reads and writes Wombat files.

• A Wombat class that encapsulates the Wombat data and is used by your other Beans

and components.

In addition, customers have demanded to be able to programmatically manipulate

Wombats, independently from the visual viewer or editor Beans. You’ll need to create a

DataContentHandler that can convert a byte stream to and from a Wombat object. When

reading, the WombatDataContentHandler reads a byte stream and returns a new

Wombat object. When writing, the WombatDataContentHandler takes a Wombat object

and produces a corresponding byte stream. You’ll need to publish the API to the

Wombat class.

The WombatDataContentHandler is delivered as a class and is designated as a

DataContentHandler that can operate on Wombats in the mailcap file included in your

JAR file.

Your mailcap file changes to list the appropriate Wombat Beans, which implement user

commands:

application/x-wombat; ; x-java-View=com.foo.WombatViewBean; \

x-java-edit=com.foo.WombatEditBean; \

 x-java-print=com.foo.WombatPrintBean; \

 x-java-content-handler=com.foo.WombatDataContentHandler

Your Wombat Beans can continue to implement the Externalizable interface, and thus

read and write Wombat byte streams. They are more likely to simply operate on

Wombat objects directly. To find the Wombat object they’re being invoked to operate

on, they implement the CommandObject interface. The setCommandContext method

refers them to the corresponding DataHandler, from which they can invoke the

getContent method, which will return a Wombat object (produced by the WombatData-

ContentHandler).

All components are packaged in a JAR file.

8.3 Viewer Only

The Wombat product has been wildly successful. The ViewAll Company has decided

that it can produce a Wombat viewer that’s much faster than the WombatViewer Bean.

Since they don’t want to depend on the presence of any Wombat components, their

viewer must parse the Wombat file format, which they reverse engineered.

The ViewAll WombatViewerBean implements the Externalizable interface to read the

Wombat data format.

ViewAll delivers an appropriate mailcap file:

application/x-wombat; ; x-java-view=com.viewall.WombatViewer

and mime.types file:

Framework Deliverables

17 of 20

type=application/x-wombat desc=”Wombat” exts=wom

All components are packaged in a JAR file.

8.4 ContentHandler Bean Only

Now that everyone is using Wombats, you’ve decided that it would be nice if you could

notify people by email when new Wombats are created. You have designed a new

WombatNotification class and a corresponding data format to be sent by email using the

MIME type “application/x-wombat-notification”. Your server detects the presence of

new Wombats, constructs a WombatNotification object, and constructs and sends an

email message with the Wombat notification data as an attachment. Your customers run

a program that scans their email INBOX for messages with Wombat notification

attachments and use the WombatNotification class to notify their users of the new

Wombats.

In addition to the server application and user application described, you’ll need a

DataContentHandler to plug into the DataHandler infrastructure and construct the

WombatNotification objects. The WombatNotification DataContentHandler is delivered

as a class named WombatNotificationDataContentHandler and is delivered in a JAR file

with the following mailcap file:

application/x-wombat-notification; \

 WombatNotificationDataContentHandler

The server application creates DataHandlers for its WombatNotification objects. The

email system uses the DataHandler to fetch a byte stream corresponding to the

WombatNotification object. (The DataHandler uses the DataContentHandler to do this.)

The client application retrieves a DataHandler for the email attachment and uses the

getContent method to get the corresponding WombatNotification object, which will

then notify the user.

9.0 Framework Deliverables

9.1 Packaging Details

The JAF is implemented as a Standard Extension to the Java™ Platform and is also

included in the J2SE 6.0 release. The following are some more details about the

package:

• The package name is javax.activation.

• This release is included in J2SE 6.0 and J2EE 5.0, and is also available separately for

use on earlier versions of J2SE.

• The JAF Reference Implementation does not include DataContentHandlers for any

MIME data types; applications must include the DataContentHandlers thy need.

Framework Deliverables

18 of 20

Note that the JavaMail Reference Implementation includes DataContentHandlers for

some basic data types used in mail messages.

9.2 Framework Core Classes

interface DataSource: The DataSource interface provides the JavaBeans Activation

Framework with an abstraction of some arbitrary collection of data. It provides a type

for that data as well as access to it in the form of InputStreams and OutputStreams

where appropriate.

class DataHandler: The DataHandler class provides a consistent interface to data

available in many different sources and formats. It manages simple stream to string

conversions and related operations using DataContentHandlers. It provides access to

commands that can operate on the data. The commands are found using a

CommandMap.

interface DataContentHandler: The DataContentHandler interface is implemented

by objects that can be used to extend the capabilities of the DataHandler’s

implementation of the Transferable interface. Through DataContentHandlers the

framework can be extended to convert streams in to objects, and to write objects to

streams.

interface DataContentHandlerFactory: This interface defines a factory for

DataContentHandlers. An implementation of this interface should map a MIME type

into an instance of DataContentHandler. The design pattern for classes implementing

this interface is the same as for the ContentHandler mechanism used in java.net.URL.

class CommandMap: The CommandMap class provides an interface to the registry

of viewer, editor, print, etc. objects available in the system. Developers are expected to

either use the CommandMap implementation included with this package

(MailcapCommandMap) or develop their own. Note that some of the methods in this

class are abstract.

interface CommandObject: Beans that are Activation Framework aware implement

this interface to find out which command verb they’re being asked to perform, and to

obtain the DataHandler representing the data they should operate on. Beans that don’t

implement this interface may be used as well. Such commands may obtain the data

using the Externalizable interface, or using an application-specific method.

class CommandInfo: The CommandInfo class is used by CommandMap

implementations to describe the results of command requests. It provides the requestor

with both the verb requested, as well as an instance of the bean. There is also a method

that will return the name of the class that implements the command but it is not

guaranteed to return a valid value. The reason for this is to allow CommandMap

implementations that subclass CommandInfo to provide special behavior. For example a

CommandMap could dynamically generate Beans. In this case, it might not be possible

to create an object with all the correct state information solely from the class name.

Document Change History

19 of 20

9.3 Framework Auxiliary Classes

class FileDataSource: The FileDataSource class implements a simple DataSource

object that encapsulates a file. It provides data typing services via a FileTypeMap

object.

class FileTypeMap: The FileTypeMap is an abstract class that provides a data typing

interface for files. Implementations of this class will implement the getContentType

methods which will derive a content type from a file name or a File object.

FileTypeMaps could use any scheme to determine the data type, from examining the file

extension of a file (like the MimetypesFileTypeMap) to opening the file and trying to

derive its type from the contents of the file. The FileDataSource class uses the default

FileTypeMap (a MimetypesFileTypeMap unless changed) to determine the content type

of files.

class MimetypesFileTypeMap: This class extends FileTypeMap and provides data

typing of files via their file extension. It uses the .mime.types format.

class URLDataSource: The URLDataSource class provides an object that wraps a

URL object in a DataSource interface. URLDataSource simplifies the handling of data

described by URLs within the JavaBeans Activation Framework because this class can

be used to create new DataHandlers.

class MailcapCommandMap: MailcapCommandMap extends the CommandMap

abstract class. It implements a CommandMap whose configuration is based on mailcap

files (RFC 1524). The MailcapCommandMap can be configured both programmatically

and via configuration files.

class ActivationDataFlavor: The ActivationDataFlavor is a special subclass of

java.awt.datatransfer.DataFlavor. It allows the JAF to set all three values stored by the

DataFlavor class via a new constructor as well as improved MIME parsing in the equals

method. Except for the improved parsing, its semantics are identical to that of the JDK’s

DataFlavor class.

class UnsupportedDataTypeException: Signals that requested operation does not

support the requested data type.

class MimeType: A Multipurpose Internet Extension (MIME) type, as defined in

RFC 2045 and 2046.

class com.sun.activation.viewers.*: A few simple example viewer Beans (text

and image).

10.0 Document Change History

May 13,1997:Initial Public Draft 1

Aug 1, 1997: Internal Review Draft 2

Document Change History

20 of 20

• Added Integration Points section

•Minor API changes

Sept 16 1997:Second Public Draft 3

• Edited document to reflect change to Standard Extension

• Removed URL/URLConnection section

•Minor API changes

Oct 28 1997: Third Public Draft 4

•Minor API changes

• Add additional class descriptions

• Fixed minor errata

Dec 9, 1997: Fourth Public Draft 5

•Minor API changes

• Add additional class descriptions

• Fixed minor errata

• Includes Frozen API

Feb. 20, 1998: Version 0.6

•Minor typos fixed.

• Change bars removed.

Mar. 16, 1998: Version 1.0

• Version 1.0

Mar. 6, 1999: Version 1.0a

• Fixed minor typos.

• Synchronized with updated javadocs

May 16, 2005

• Updated for 1.1 release

• Removed all detailed API specifications; refer to the javadocs

July 11, 2017

• Updated for 1.2 release

