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Introduction 1

Introduction

Bison is a general-purpose parser generator that converts an annotated context-free gram-
mar into an LALR(1) or GLR parser for that grammar. Once you are proficient with Bison,
you can use it to develop a wide range of language parsers, from those used in simple desk
calculators to complex programming languages.

Bison is upward compatible with Yacc: all properly-written Yacc grammars ought to
work with Bison with no change. Anyone familiar with Yacc should be able to use Bison
with little trouble. You need to be fluent in C or C++ programming in order to use Bison
or to understand this manual.

We begin with tutorial chapters that explain the basic concepts of using Bison and show
three explained examples, each building on the last. If you don’t know Bison or Yacc,
start by reading these chapters. Reference chapters follow which describe specific aspects
of Bison in detail.

Bison was written primarily by Robert Corbett; Richard Stallman made it
Yacc-compatible. Wilfred Hansen of Carnegie Mellon University added multi-character
string literals and other features.

This edition corresponds to version 2.4.1 of Bison.



2 Bison 2.4.1



Conditions for Using Bison 3

Conditions for Using Bison

The distribution terms for Bison-generated parsers permit using the parsers in nonfree
programs. Before Bison version 2.2, these extra permissions applied only when Bison was
generating LALR(1) parsers in C. And before Bison version 1.24, Bison-generated parsers
could be used only in programs that were free software.

The other GNU programming tools, such as the GNU C compiler, have never had such
a requirement. They could always be used for nonfree software. The reason Bison was
different was not due to a special policy decision; it resulted from applying the usual General
Public License to all of the Bison source code.

The output of the Bison utility—the Bison parser file—contains a verbatim copy of a
sizable piece of Bison, which is the code for the parser’s implementation. (The actions from
your grammar are inserted into this implementation at one point, but most of the rest of
the implementation is not changed.) When we applied the GPL terms to the skeleton code
for the parser’s implementation, the effect was to restrict the use of Bison output to free
software.

We didn’t change the terms because of sympathy for people who want to make software
proprietary. Software should be free. But we concluded that limiting Bison’s use to free
software was doing little to encourage people to make other software free. So we decided to
make the practical conditions for using Bison match the practical conditions for using the
other GNU tools.

This exception applies when Bison is generating code for a parser. You can tell whether
the exception applies to a Bison output file by inspecting the file for text beginning with
“As a special exception. . . ”. The text spells out the exact terms of the exception.
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GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/
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Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.
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The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.
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When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.
You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:
a. The work must carry prominent notices stating that you modified it, and giving a

relevant date.
b. The work must carry prominent notices stating that it is released under this Li-

cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:
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a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.
A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.
“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.
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The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.
If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).
The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.
“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:
a. Disclaiming warranty or limiting liability differently from the terms of sections 15

and 16 of this License; or
b. Requiring preservation of specified reasonable legal notices or author attributions

in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or
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d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.
You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).
However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.
Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.
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However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.
An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.
A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.
A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.
In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.
If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so
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available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.
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The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.
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END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short notice like this when it

starts in an interactive mode:
program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html
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1 The Concepts of Bison

This chapter introduces many of the basic concepts without which the details of Bison will
not make sense. If you do not already know how to use Bison or Yacc, we suggest you start
by reading this chapter carefully.

1.1 Languages and Context-Free Grammars

In order for Bison to parse a language, it must be described by a context-free grammar.
This means that you specify one or more syntactic groupings and give rules for constructing
them from their parts. For example, in the C language, one kind of grouping is called an
‘expression’. One rule for making an expression might be, “An expression can be made of a
minus sign and another expression”. Another would be, “An expression can be an integer”.
As you can see, rules are often recursive, but there must be at least one rule which leads
out of the recursion.

The most common formal system for presenting such rules for humans to read is Backus-
Naur Form or “BNF”, which was developed in order to specify the language Algol 60. Any
grammar expressed in BNF is a context-free grammar. The input to Bison is essentially
machine-readable BNF.

There are various important subclasses of context-free grammar. Although it can handle
almost all context-free grammars, Bison is optimized for what are called LALR(1) grammars.
In brief, in these grammars, it must be possible to tell how to parse any portion of an input
string with just a single token of lookahead. Strictly speaking, that is a description of
an LR(1) grammar, and LALR(1) involves additional restrictions that are hard to explain
simply; but it is rare in actual practice to find an LR(1) grammar that fails to be LALR(1).
See Section 5.7 [Mysterious Reduce/Reduce Conflicts], page 95, for more information on
this.

Parsers for LALR(1) grammars are deterministic, meaning roughly that the next gram-
mar rule to apply at any point in the input is uniquely determined by the preceding input
and a fixed, finite portion (called a lookahead) of the remaining input. A context-free gram-
mar can be ambiguous, meaning that there are multiple ways to apply the grammar rules to
get the same inputs. Even unambiguous grammars can be nondeterministic, meaning that
no fixed lookahead always suffices to determine the next grammar rule to apply. With the
proper declarations, Bison is also able to parse these more general context-free grammars,
using a technique known as GLR parsing (for Generalized LR). Bison’s GLR parsers are able
to handle any context-free grammar for which the number of possible parses of any given
string is finite.

In the formal grammatical rules for a language, each kind of syntactic unit or grouping
is named by a symbol. Those which are built by grouping smaller constructs according
to grammatical rules are called nonterminal symbols; those which can’t be subdivided
are called terminal symbols or token types. We call a piece of input corresponding to a
single terminal symbol a token, and a piece corresponding to a single nonterminal symbol
a grouping.

We can use the C language as an example of what symbols, terminal and nonterminal,
mean. The tokens of C are identifiers, constants (numeric and string), and the various key-
words, arithmetic operators and punctuation marks. So the terminal symbols of a grammar
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for C include ‘identifier’, ‘number’, ‘string’, plus one symbol for each keyword, operator
or punctuation mark: ‘if’, ‘return’, ‘const’, ‘static’, ‘int’, ‘char’, ‘plus-sign’, ‘open-brace’,
‘close-brace’, ‘comma’ and many more. (These tokens can be subdivided into characters,
but that is a matter of lexicography, not grammar.)

Here is a simple C function subdivided into tokens:

int /* keyword ‘int’ */
square (int x) /* identifier, open-paren, keyword ‘int’, identifier, close-paren */
{ /* open-brace */
return x * x; /* keyword ‘return’, identifier, asterisk, identifier, semicolon */

} /* close-brace */

The syntactic groupings of C include the expression, the statement, the declaration,
and the function definition. These are represented in the grammar of C by nonterminal
symbols ‘expression’, ‘statement’, ‘declaration’ and ‘function definition’. The full grammar
uses dozens of additional language constructs, each with its own nonterminal symbol, in
order to express the meanings of these four. The example above is a function definition;
it contains one declaration, and one statement. In the statement, each ‘x’ is an expression
and so is ‘x * x’.

Each nonterminal symbol must have grammatical rules showing how it is made out of
simpler constructs. For example, one kind of C statement is the return statement; this
would be described with a grammar rule which reads informally as follows:

A ‘statement’ can be made of a ‘return’ keyword, an ‘expression’ and a ‘semi-
colon’.

There would be many other rules for ‘statement’, one for each kind of statement in C.

One nonterminal symbol must be distinguished as the special one which defines a com-
plete utterance in the language. It is called the start symbol. In a compiler, this means a
complete input program. In the C language, the nonterminal symbol ‘sequence of definitions
and declarations’ plays this role.

For example, ‘1 + 2’ is a valid C expression—a valid part of a C program—but it is not
valid as an entire C program. In the context-free grammar of C, this follows from the fact
that ‘expression’ is not the start symbol.

The Bison parser reads a sequence of tokens as its input, and groups the tokens using the
grammar rules. If the input is valid, the end result is that the entire token sequence reduces
to a single grouping whose symbol is the grammar’s start symbol. If we use a grammar for
C, the entire input must be a ‘sequence of definitions and declarations’. If not, the parser
reports a syntax error.

1.2 From Formal Rules to Bison Input

A formal grammar is a mathematical construct. To define the language for Bison, you must
write a file expressing the grammar in Bison syntax: a Bison grammar file. See Chapter 3
[Bison Grammar Files], page 47.

A nonterminal symbol in the formal grammar is represented in Bison input as an iden-
tifier, like an identifier in C. By convention, it should be in lower case, such as expr, stmt
or declaration.
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The Bison representation for a terminal symbol is also called a token type. Token types
as well can be represented as C-like identifiers. By convention, these identifiers should be
upper case to distinguish them from nonterminals: for example, INTEGER, IDENTIFIER,
IF or RETURN. A terminal symbol that stands for a particular keyword in the language
should be named after that keyword converted to upper case. The terminal symbol error
is reserved for error recovery. See Section 3.2 [Symbols], page 52.

A terminal symbol can also be represented as a character literal, just like a C character
constant. You should do this whenever a token is just a single character (parenthesis,
plus-sign, etc.): use that same character in a literal as the terminal symbol for that token.

A third way to represent a terminal symbol is with a C string constant containing several
characters. See Section 3.2 [Symbols], page 52, for more information.

The grammar rules also have an expression in Bison syntax. For example, here is the
Bison rule for a C return statement. The semicolon in quotes is a literal character token,
representing part of the C syntax for the statement; the naked semicolon, and the colon,
are Bison punctuation used in every rule.

stmt: RETURN expr ’;’
;

See Section 3.3 [Syntax of Grammar Rules], page 54.

1.3 Semantic Values

A formal grammar selects tokens only by their classifications: for example, if a rule mentions
the terminal symbol ‘integer constant’, it means that any integer constant is grammatically
valid in that position. The precise value of the constant is irrelevant to how to parse the
input: if ‘x+4’ is grammatical then ‘x+1’ or ‘x+3989’ is equally grammatical.

But the precise value is very important for what the input means once it is parsed.
A compiler is useless if it fails to distinguish between 4, 1 and 3989 as constants in the
program! Therefore, each token in a Bison grammar has both a token type and a semantic
value. See Section 3.5 [Defining Language Semantics], page 56, for details.

The token type is a terminal symbol defined in the grammar, such as INTEGER,
IDENTIFIER or ’,’. It tells everything you need to know to decide where the token may
validly appear and how to group it with other tokens. The grammar rules know nothing
about tokens except their types.

The semantic value has all the rest of the information about the meaning of the token,
such as the value of an integer, or the name of an identifier. (A token such as ’,’ which is
just punctuation doesn’t need to have any semantic value.)

For example, an input token might be classified as token type INTEGER and have the
semantic value 4. Another input token might have the same token type INTEGER but
value 3989. When a grammar rule says that INTEGER is allowed, either of these tokens is
acceptable because each is an INTEGER. When the parser accepts the token, it keeps track
of the token’s semantic value.

Each grouping can also have a semantic value as well as its nonterminal symbol. For
example, in a calculator, an expression typically has a semantic value that is a number. In
a compiler for a programming language, an expression typically has a semantic value that
is a tree structure describing the meaning of the expression.
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1.4 Semantic Actions

In order to be useful, a program must do more than parse input; it must also produce some
output based on the input. In a Bison grammar, a grammar rule can have an action made
up of C statements. Each time the parser recognizes a match for that rule, the action is
executed. See Section 3.5.3 [Actions], page 57.

Most of the time, the purpose of an action is to compute the semantic value of the whole
construct from the semantic values of its parts. For example, suppose we have a rule which
says an expression can be the sum of two expressions. When the parser recognizes such a
sum, each of the subexpressions has a semantic value which describes how it was built up.
The action for this rule should create a similar sort of value for the newly recognized larger
expression.

For example, here is a rule that says an expression can be the sum of two subexpressions:

expr: expr ’+’ expr { $$ = $1 + $3; }
;

The action says how to produce the semantic value of the sum expression from the values
of the two subexpressions.

1.5 Writing GLR Parsers

In some grammars, Bison’s standard LALR(1) parsing algorithm cannot decide whether
to apply a certain grammar rule at a given point. That is, it may not be able to decide
(on the basis of the input read so far) which of two possible reductions (applications of a
grammar rule) applies, or whether to apply a reduction or read more of the input and apply
a reduction later in the input. These are known respectively as reduce/reduce conflicts
(see Section 5.6 [Reduce/Reduce], page 94), and shift/reduce conflicts (see Section 5.2
[Shift/Reduce], page 90).

To use a grammar that is not easily modified to be LALR(1), a more general parsing
algorithm is sometimes necessary. If you include %glr-parser among the Bison declarations
in your file (see Section 3.1 [Grammar Outline], page 47), the result is a Generalized LR
(GLR) parser. These parsers handle Bison grammars that contain no unresolved conflicts
(i.e., after applying precedence declarations) identically to LALR(1) parsers. However, when
faced with unresolved shift/reduce and reduce/reduce conflicts, GLR parsers use the simple
expedient of doing both, effectively cloning the parser to follow both possibilities. Each of
the resulting parsers can again split, so that at any given time, there can be any number
of possible parses being explored. The parsers proceed in lockstep; that is, all of them
consume (shift) a given input symbol before any of them proceed to the next. Each of the
cloned parsers eventually meets one of two possible fates: either it runs into a parsing error,
in which case it simply vanishes, or it merges with another parser, because the two of them
have reduced the input to an identical set of symbols.

During the time that there are multiple parsers, semantic actions are recorded, but not
performed. When a parser disappears, its recorded semantic actions disappear as well, and
are never performed. When a reduction makes two parsers identical, causing them to merge,
Bison records both sets of semantic actions. Whenever the last two parsers merge, reverting
to the single-parser case, Bison resolves all the outstanding actions either by precedences
given to the grammar rules involved, or by performing both actions, and then calling a
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designated user-defined function on the resulting values to produce an arbitrary merged
result.

1.5.1 Using GLR on Unambiguous Grammars

In the simplest cases, you can use the GLR algorithm to parse grammars that are unam-
biguous, but fail to be LALR(1). Such grammars typically require more than one symbol of
lookahead, or (in rare cases) fall into the category of grammars in which the LALR(1) algo-
rithm throws away too much information (they are in LR(1), but not LALR(1), Section 5.7
[Mystery Conflicts], page 95).

Consider a problem that arises in the declaration of enumerated and subrange types in
the programming language Pascal. Here are some examples:

type subrange = lo .. hi;
type enum = (a, b, c);

The original language standard allows only numeric literals and constant identifiers for the
subrange bounds (‘lo’ and ‘hi’), but Extended Pascal (ISO/IEC 10206) and many other
Pascal implementations allow arbitrary expressions there. This gives rise to the following
situation, containing a superfluous pair of parentheses:

type subrange = (a) .. b;

Compare this to the following declaration of an enumerated type with only one value:

type enum = (a);

(These declarations are contrived, but they are syntactically valid, and more-complicated
cases can come up in practical programs.)

These two declarations look identical until the ‘..’ token. With normal LALR(1) one-
token lookahead it is not possible to decide between the two forms when the identifier ‘a’
is parsed. It is, however, desirable for a parser to decide this, since in the latter case ‘a’
must become a new identifier to represent the enumeration value, while in the former case
‘a’ must be evaluated with its current meaning, which may be a constant or even a function
call.

You could parse ‘(a)’ as an “unspecified identifier in parentheses”, to be resolved later,
but this typically requires substantial contortions in both semantic actions and large parts
of the grammar, where the parentheses are nested in the recursive rules for expressions.

You might think of using the lexer to distinguish between the two forms by returning
different tokens for currently defined and undefined identifiers. But if these declarations
occur in a local scope, and ‘a’ is defined in an outer scope, then both forms are possible—
either locally redefining ‘a’, or using the value of ‘a’ from the outer scope. So this approach
cannot work.

A simple solution to this problem is to declare the parser to use the GLR algorithm.
When the GLR parser reaches the critical state, it merely splits into two branches and
pursues both syntax rules simultaneously. Sooner or later, one of them runs into a parsing
error. If there is a ‘..’ token before the next ‘;’, the rule for enumerated types fails since
it cannot accept ‘..’ anywhere; otherwise, the subrange type rule fails since it requires
a ‘..’ token. So one of the branches fails silently, and the other one continues normally,
performing all the intermediate actions that were postponed during the split.



22 Bison 2.4.1

If the input is syntactically incorrect, both branches fail and the parser reports a syntax
error as usual.

The effect of all this is that the parser seems to “guess” the correct branch to take, or
in other words, it seems to use more lookahead than the underlying LALR(1) algorithm
actually allows for. In this example, LALR(2) would suffice, but also some cases that are
not LALR(k) for any k can be handled this way.

In general, a GLR parser can take quadratic or cubic worst-case time, and the current
Bison parser even takes exponential time and space for some grammars. In practice, this
rarely happens, and for many grammars it is possible to prove that it cannot happen. The
present example contains only one conflict between two rules, and the type-declaration
context containing the conflict cannot be nested. So the number of branches that can exist
at any time is limited by the constant 2, and the parsing time is still linear.

Here is a Bison grammar corresponding to the example above. It parses a vastly simpli-
fied form of Pascal type declarations.

%token TYPE DOTDOT ID

%left ’+’ ’-’
%left ’*’ ’/’

%%

type_decl : TYPE ID ’=’ type ’;’
;

type : ’(’ id_list ’)’
| expr DOTDOT expr
;

id_list : ID
| id_list ’,’ ID
;

expr : ’(’ expr ’)’
| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| ID
;

When used as a normal LALR(1) grammar, Bison correctly complains about one re-
duce/reduce conflict. In the conflicting situation the parser chooses one of the alternatives,
arbitrarily the one declared first. Therefore the following correct input is not recognized:

type t = (a) .. b;
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The parser can be turned into a GLR parser, while also telling Bison to be silent about
the one known reduce/reduce conflict, by adding these two declarations to the Bison input
file (before the first ‘%%’):

%glr-parser
%expect-rr 1

No change in the grammar itself is required. Now the parser recognizes all valid declarations,
according to the limited syntax above, transparently. In fact, the user does not even notice
when the parser splits.

So here we have a case where we can use the benefits of GLR, almost without disadvan-
tages. Even in simple cases like this, however, there are at least two potential problems
to beware. First, always analyze the conflicts reported by Bison to make sure that GLR
splitting is only done where it is intended. A GLR parser splitting inadvertently may cause
problems less obvious than an LALR parser statically choosing the wrong alternative in a
conflict. Second, consider interactions with the lexer (see Section 7.1 [Semantic Tokens],
page 103) with great care. Since a split parser consumes tokens without performing any
actions during the split, the lexer cannot obtain information via parser actions. Some cases
of lexer interactions can be eliminated by using GLR to shift the complications from the
lexer to the parser. You must check the remaining cases for correctness.

In our example, it would be safe for the lexer to return tokens based on their current
meanings in some symbol table, because no new symbols are defined in the middle of a type
declaration. Though it is possible for a parser to define the enumeration constants as they
are parsed, before the type declaration is completed, it actually makes no difference since
they cannot be used within the same enumerated type declaration.

1.5.2 Using GLR to Resolve Ambiguities

Let’s consider an example, vastly simplified from a C++ grammar.
%{
#include <stdio.h>
#define YYSTYPE char const *
int yylex (void);
void yyerror (char const *);

%}

%token TYPENAME ID

%right ’=’
%left ’+’

%glr-parser

%%

prog :
| prog stmt { printf ("\n"); }
;
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stmt : expr ’;’ %dprec 1
| decl %dprec 2
;

expr : ID { printf ("%s ", $$); }
| TYPENAME ’(’ expr ’)’

{ printf ("%s <cast> ", $1); }
| expr ’+’ expr { printf ("+ "); }
| expr ’=’ expr { printf ("= "); }
;

decl : TYPENAME declarator ’;’
{ printf ("%s <declare> ", $1); }

| TYPENAME declarator ’=’ expr ’;’
{ printf ("%s <init-declare> ", $1); }

;

declarator : ID { printf ("\"%s\" ", $1); }
| ’(’ declarator ’)’
;

This models a problematic part of the C++ grammar—the ambiguity between certain dec-
larations and statements. For example,

T (x) = y+z;

parses as either an expr or a stmt (assuming that ‘T’ is recognized as a TYPENAME and
‘x’ as an ID). Bison detects this as a reduce/reduce conflict between the rules expr : ID
and declarator : ID, which it cannot resolve at the time it encounters x in the example
above. Since this is a GLR parser, it therefore splits the problem into two parses, one for each
choice of resolving the reduce/reduce conflict. Unlike the example from the previous section
(see Section 1.5.1 [Simple GLR Parsers], page 21), however, neither of these parses “dies,”
because the grammar as it stands is ambiguous. One of the parsers eventually reduces stmt
: expr ’;’ and the other reduces stmt : decl, after which both parsers are in an identical
state: they’ve seen ‘prog stmt’ and have the same unprocessed input remaining. We say
that these parses have merged.

At this point, the GLR parser requires a specification in the grammar of how to choose
between the competing parses. In the example above, the two %dprec declarations specify
that Bison is to give precedence to the parse that interprets the example as a decl, which
implies that x is a declarator. The parser therefore prints

"x" y z + T <init-declare>

The %dprec declarations only come into play when more than one parse survives. Con-
sider a different input string for this parser:

T (x) + y;

This is another example of using GLR to parse an unambiguous construct, as shown in
the previous section (see Section 1.5.1 [Simple GLR Parsers], page 21). Here, there is no
ambiguity (this cannot be parsed as a declaration). However, at the time the Bison parser
encounters x, it does not have enough information to resolve the reduce/reduce conflict
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(again, between x as an expr or a declarator). In this case, no precedence declaration
is used. Again, the parser splits into two, one assuming that x is an expr, and the other
assuming x is a declarator. The second of these parsers then vanishes when it sees +, and
the parser prints

x T <cast> y +

Suppose that instead of resolving the ambiguity, you wanted to see all the possibilities.
For this purpose, you must merge the semantic actions of the two possible parsers, rather
than choosing one over the other. To do so, you could change the declaration of stmt as
follows:

stmt : expr ’;’ %merge <stmtMerge>
| decl %merge <stmtMerge>
;

and define the stmtMerge function as:
static YYSTYPE
stmtMerge (YYSTYPE x0, YYSTYPE x1)
{
printf ("<OR> ");
return "";

}

with an accompanying forward declaration in the C declarations at the beginning of the
file:

%{
#define YYSTYPE char const *
static YYSTYPE stmtMerge (YYSTYPE x0, YYSTYPE x1);

%}

With these declarations, the resulting parser parses the first example as both an expr and
a decl, and prints

"x" y z + T <init-declare> x T <cast> y z + = <OR>

Bison requires that all of the productions that participate in any particular merge have
identical ‘%merge’ clauses. Otherwise, the ambiguity would be unresolvable, and the parser
will report an error during any parse that results in the offending merge.

1.5.3 GLR Semantic Actions

By definition, a deferred semantic action is not performed at the same time as the associated
reduction. This raises caveats for several Bison features you might use in a semantic action
in a GLR parser.

In any semantic action, you can examine yychar to determine the type of the lookahead
token present at the time of the associated reduction. After checking that yychar is not set
to YYEMPTY or YYEOF, you can then examine yylval and yylloc to determine the lookahead
token’s semantic value and location, if any. In a nondeferred semantic action, you can also
modify any of these variables to influence syntax analysis. See Section 5.1 [Lookahead
Tokens], page 89.

In a deferred semantic action, it’s too late to influence syntax analysis. In this case,
yychar, yylval, and yylloc are set to shallow copies of the values they had at the time
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of the associated reduction. For this reason alone, modifying them is dangerous. Moreover,
the result of modifying them is undefined and subject to change with future versions of
Bison. For example, if a semantic action might be deferred, you should never write it to
invoke yyclearin (see Section 4.8 [Action Features], page 85) or to attempt to free memory
referenced by yylval.

Another Bison feature requiring special consideration is YYERROR (see Section 4.8 [Action
Features], page 85), which you can invoke in a semantic action to initiate error recovery.
During deterministic GLR operation, the effect of YYERROR is the same as its effect in an
LALR(1) parser. In a deferred semantic action, its effect is undefined.

Also, see Section 3.6.3 [Default Action for Locations], page 63, which describes a special
usage of YYLLOC_DEFAULT in GLR parsers.

1.5.4 Considerations when Compiling GLR Parsers

The GLR parsers require a compiler for ISO C89 or later. In addition, they use the inline
keyword, which is not C89, but is C99 and is a common extension in pre-C99 compilers. It
is up to the user of these parsers to handle portability issues. For instance, if using Autoconf
and the Autoconf macro AC_C_INLINE, a mere

%{
#include <config.h>

%}

will suffice. Otherwise, we suggest

%{
#if __STDC_VERSION__ < 199901 && ! defined __GNUC__ && ! defined inline
#define inline
#endif

%}

1.6 Locations

Many applications, like interpreters or compilers, have to produce verbose and useful error
messages. To achieve this, one must be able to keep track of the textual location, or location,
of each syntactic construct. Bison provides a mechanism for handling these locations.

Each token has a semantic value. In a similar fashion, each token has an associated
location, but the type of locations is the same for all tokens and groupings. Moreover, the
output parser is equipped with a default data structure for storing locations (see Section 3.6
[Locations], page 61, for more details).

Like semantic values, locations can be reached in actions using a dedicated set of con-
structs. In the example above, the location of the whole grouping is @$, while the locations
of the subexpressions are @1 and @3.

When a rule is matched, a default action is used to compute the semantic value of its left
hand side (see Section 3.5.3 [Actions], page 57). In the same way, another default action
is used for locations. However, the action for locations is general enough for most cases,
meaning there is usually no need to describe for each rule how @$ should be formed. When
building a new location for a given grouping, the default behavior of the output parser is
to take the beginning of the first symbol, and the end of the last symbol.



Chapter 1: The Concepts of Bison 27

1.7 Bison Output: the Parser File

When you run Bison, you give it a Bison grammar file as input. The output is a C source file
that parses the language described by the grammar. This file is called a Bison parser. Keep
in mind that the Bison utility and the Bison parser are two distinct programs: the Bison
utility is a program whose output is the Bison parser that becomes part of your program.

The job of the Bison parser is to group tokens into groupings according to the grammar
rules—for example, to build identifiers and operators into expressions. As it does this, it
runs the actions for the grammar rules it uses.

The tokens come from a function called the lexical analyzer that you must supply in some
fashion (such as by writing it in C). The Bison parser calls the lexical analyzer each time it
wants a new token. It doesn’t know what is “inside” the tokens (though their semantic values
may reflect this). Typically the lexical analyzer makes the tokens by parsing characters of
text, but Bison does not depend on this. See Section 4.6 [The Lexical Analyzer Function
yylex], page 81.

The Bison parser file is C code which defines a function named yyparse which implements
that grammar. This function does not make a complete C program: you must supply some
additional functions. One is the lexical analyzer. Another is an error-reporting function
which the parser calls to report an error. In addition, a complete C program must start
with a function called main; you have to provide this, and arrange for it to call yyparse or
the parser will never run. See Chapter 4 [Parser C-Language Interface], page 79.

Aside from the token type names and the symbols in the actions you write, all symbols
defined in the Bison parser file itself begin with ‘yy’ or ‘YY’. This includes interface functions
such as the lexical analyzer function yylex, the error reporting function yyerror and the
parser function yyparse itself. This also includes numerous identifiers used for internal
purposes. Therefore, you should avoid using C identifiers starting with ‘yy’ or ‘YY’ in the
Bison grammar file except for the ones defined in this manual. Also, you should avoid using
the C identifiers ‘malloc’ and ‘free’ for anything other than their usual meanings.

In some cases the Bison parser file includes system headers, and in those cases your
code should respect the identifiers reserved by those headers. On some non-GNU hosts,
<alloca.h>, <malloc.h>, <stddef.h>, and <stdlib.h> are included as needed to declare
memory allocators and related types. <libintl.h> is included if message translation is in
use (see Section 4.9 [Internationalization], page 87). Other system headers may be included
if you define YYDEBUG to a nonzero value (see Section 8.2 [Tracing Your Parser], page 113).

1.8 Stages in Using Bison

The actual language-design process using Bison, from grammar specification to a working
compiler or interpreter, has these parts:
1. Formally specify the grammar in a form recognized by Bison (see Chapter 3 [Bison

Grammar Files], page 47). For each grammatical rule in the language, describe the
action that is to be taken when an instance of that rule is recognized. The action is
described by a sequence of C statements.

2. Write a lexical analyzer to process input and pass tokens to the parser. The lexical
analyzer may be written by hand in C (see Section 4.6 [The Lexical Analyzer Function
yylex], page 81). It could also be produced using Lex, but the use of Lex is not
discussed in this manual.
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3. Write a controlling function that calls the Bison-produced parser.
4. Write error-reporting routines.

To turn this source code as written into a runnable program, you must follow these steps:
1. Run Bison on the grammar to produce the parser.
2. Compile the code output by Bison, as well as any other source files.
3. Link the object files to produce the finished product.

1.9 The Overall Layout of a Bison Grammar

The input file for the Bison utility is a Bison grammar file. The general form of a Bison
grammar file is as follows:

%{
Prologue

%}

Bison declarations

%%
Grammar rules

%%
Epilogue

The ‘%%’, ‘%{’ and ‘%}’ are punctuation that appears in every Bison grammar file to separate
the sections.

The prologue may define types and variables used in the actions. You can also use
preprocessor commands to define macros used there, and use #include to include header
files that do any of these things. You need to declare the lexical analyzer yylex and the
error printer yyerror here, along with any other global identifiers used by the actions in
the grammar rules.

The Bison declarations declare the names of the terminal and nonterminal symbols, and
may also describe operator precedence and the data types of semantic values of various
symbols.

The grammar rules define how to construct each nonterminal symbol from its parts.
The epilogue can contain any code you want to use. Often the definitions of functions

declared in the prologue go here. In a simple program, all the rest of the program can go
here.
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2 Examples

Now we show and explain three sample programs written using Bison: a reverse polish
notation calculator, an algebraic (infix) notation calculator, and a multi-function calculator.
All three have been tested under BSD Unix 4.3; each produces a usable, though limited,
interactive desk-top calculator.

These examples are simple, but Bison grammars for real programming languages are
written the same way. You can copy these examples into a source file to try them.

2.1 Reverse Polish Notation Calculator

The first example is that of a simple double-precision reverse polish notation calculator (a
calculator using postfix operators). This example provides a good starting point, since oper-
ator precedence is not an issue. The second example will illustrate how operator precedence
is handled.

The source code for this calculator is named ‘rpcalc.y’. The ‘.y’ extension is a con-
vention used for Bison input files.

2.1.1 Declarations for rpcalc

Here are the C and Bison declarations for the reverse polish notation calculator. As in C,
comments are placed between ‘/*...*/’.

/* Reverse polish notation calculator. */

%{
#define YYSTYPE double
#include <math.h>
int yylex (void);
void yyerror (char const *);

%}

%token NUM

%% /* Grammar rules and actions follow. */

The declarations section (see Section 3.1.1 [The prologue], page 47) contains two pre-
processor directives and two forward declarations.

The #define directive defines the macro YYSTYPE, thus specifying the C data type for
semantic values of both tokens and groupings (see Section 3.5.1 [Data Types of Semantic
Values], page 56). The Bison parser will use whatever type YYSTYPE is defined as; if you don’t
define it, int is the default. Because we specify double, each token and each expression
has an associated value, which is a floating point number.

The #include directive is used to declare the exponentiation function pow.

The forward declarations for yylex and yyerror are needed because the C language
requires that functions be declared before they are used. These functions will be defined in
the epilogue, but the parser calls them so they must be declared in the prologue.
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The second section, Bison declarations, provides information to Bison about the token
types (see Section 3.1.3 [The Bison Declarations Section], page 52). Each terminal sym-
bol that is not a single-character literal must be declared here. (Single-character literals
normally don’t need to be declared.) In this example, all the arithmetic operators are des-
ignated by single-character literals, so the only terminal symbol that needs to be declared
is NUM, the token type for numeric constants.

2.1.2 Grammar Rules for rpcalc

Here are the grammar rules for the reverse polish notation calculator.

input: /* empty */
| input line

;

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

;

exp: NUM { $$ = $1; }
| exp exp ’+’ { $$ = $1 + $2; }
| exp exp ’-’ { $$ = $1 - $2; }
| exp exp ’*’ { $$ = $1 * $2; }
| exp exp ’/’ { $$ = $1 / $2; }
/* Exponentiation */
| exp exp ’^’ { $$ = pow ($1, $2); }
/* Unary minus */
| exp ’n’ { $$ = -$1; }

;
%%

The groupings of the rpcalc “language” defined here are the expression (given the name
exp), the line of input (line), and the complete input transcript (input). Each of these
nonterminal symbols has several alternate rules, joined by the vertical bar ‘|’ which is read
as “or”. The following sections explain what these rules mean.

The semantics of the language is determined by the actions taken when a grouping
is recognized. The actions are the C code that appears inside braces. See Section 3.5.3
[Actions], page 57.

You must specify these actions in C, but Bison provides the means for passing semantic
values between the rules. In each action, the pseudo-variable $$ stands for the semantic
value for the grouping that the rule is going to construct. Assigning a value to $$ is the
main job of most actions. The semantic values of the components of the rule are referred
to as $1, $2, and so on.

2.1.2.1 Explanation of input

Consider the definition of input:

input: /* empty */
| input line
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;

This definition reads as follows: “A complete input is either an empty string, or a
complete input followed by an input line”. Notice that “complete input” is defined in terms
of itself. This definition is said to be left recursive since input appears always as the
leftmost symbol in the sequence. See Section 3.4 [Recursive Rules], page 55.

The first alternative is empty because there are no symbols between the colon and the
first ‘|’; this means that input can match an empty string of input (no tokens). We write
the rules this way because it is legitimate to type Ctrl-d right after you start the calculator.
It’s conventional to put an empty alternative first and write the comment ‘/* empty */’ in
it.

The second alternate rule (input line) handles all nontrivial input. It means, “After
reading any number of lines, read one more line if possible.” The left recursion makes this
rule into a loop. Since the first alternative matches empty input, the loop can be executed
zero or more times.

The parser function yyparse continues to process input until a grammatical error is seen
or the lexical analyzer says there are no more input tokens; we will arrange for the latter
to happen at end-of-input.

2.1.2.2 Explanation of line

Now consider the definition of line:

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

;

The first alternative is a token which is a newline character; this means that rpcalc
accepts a blank line (and ignores it, since there is no action). The second alternative is
an expression followed by a newline. This is the alternative that makes rpcalc useful. The
semantic value of the exp grouping is the value of $1 because the exp in question is the
first symbol in the alternative. The action prints this value, which is the result of the
computation the user asked for.

This action is unusual because it does not assign a value to $$. As a consequence, the
semantic value associated with the line is uninitialized (its value will be unpredictable).
This would be a bug if that value were ever used, but we don’t use it: once rpcalc has
printed the value of the user’s input line, that value is no longer needed.

2.1.2.3 Explanation of expr

The exp grouping has several rules, one for each kind of expression. The first rule handles
the simplest expressions: those that are just numbers. The second handles an addition-
expression, which looks like two expressions followed by a plus-sign. The third handles
subtraction, and so on.

exp: NUM
| exp exp ’+’ { $$ = $1 + $2; }
| exp exp ’-’ { $$ = $1 - $2; }
...
;
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We have used ‘|’ to join all the rules for exp, but we could equally well have written
them separately:

exp: NUM ;
exp: exp exp ’+’ { $$ = $1 + $2; } ;
exp: exp exp ’-’ { $$ = $1 - $2; } ;

...

Most of the rules have actions that compute the value of the expression in terms of the
value of its parts. For example, in the rule for addition, $1 refers to the first component exp
and $2 refers to the second one. The third component, ’+’, has no meaningful associated
semantic value, but if it had one you could refer to it as $3. When yyparse recognizes a
sum expression using this rule, the sum of the two subexpressions’ values is produced as
the value of the entire expression. See Section 3.5.3 [Actions], page 57.

You don’t have to give an action for every rule. When a rule has no action, Bison by
default copies the value of $1 into $$. This is what happens in the first rule (the one that
uses NUM).

The formatting shown here is the recommended convention, but Bison does not require
it. You can add or change white space as much as you wish. For example, this:

exp : NUM | exp exp ’+’ {$$ = $1 + $2; } | ... ;

means the same thing as this:
exp: NUM

| exp exp ’+’ { $$ = $1 + $2; }
| ...

;

The latter, however, is much more readable.

2.1.3 The rpcalc Lexical Analyzer

The lexical analyzer’s job is low-level parsing: converting characters or sequences of char-
acters into tokens. The Bison parser gets its tokens by calling the lexical analyzer. See
Section 4.6 [The Lexical Analyzer Function yylex], page 81.

Only a simple lexical analyzer is needed for the RPN calculator. This lexical analyzer
skips blanks and tabs, then reads in numbers as double and returns them as NUM tokens.
Any other character that isn’t part of a number is a separate token. Note that the token-
code for such a single-character token is the character itself.

The return value of the lexical analyzer function is a numeric code which represents
a token type. The same text used in Bison rules to stand for this token type is also a
C expression for the numeric code for the type. This works in two ways. If the token
type is a character literal, then its numeric code is that of the character; you can use the
same character literal in the lexical analyzer to express the number. If the token type is an
identifier, that identifier is defined by Bison as a C macro whose definition is the appropriate
number. In this example, therefore, NUM becomes a macro for yylex to use.

The semantic value of the token (if it has one) is stored into the global variable yylval,
which is where the Bison parser will look for it. (The C data type of yylval is YYSTYPE,
which was defined at the beginning of the grammar; see Section 2.1.1 [Declarations for
rpcalc], page 29.)
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A token type code of zero is returned if the end-of-input is encountered. (Bison recognizes
any nonpositive value as indicating end-of-input.)

Here is the code for the lexical analyzer:
/* The lexical analyzer returns a double floating point

number on the stack and the token NUM, or the numeric code
of the character read if not a number. It skips all blanks
and tabs, and returns 0 for end-of-input. */

#include <ctype.h>

int
yylex (void)
{
int c;

/* Skip white space. */
while ((c = getchar ()) == ’ ’ || c == ’\t’)
;

/* Process numbers. */
if (c == ’.’ || isdigit (c))
{

ungetc (c, stdin);
scanf ("%lf", &yylval);
return NUM;

}
/* Return end-of-input. */
if (c == EOF)
return 0;

/* Return a single char. */
return c;

}

2.1.4 The Controlling Function

In keeping with the spirit of this example, the controlling function is kept to the bare
minimum. The only requirement is that it call yyparse to start the process of parsing.

int
main (void)
{
return yyparse ();

}

2.1.5 The Error Reporting Routine

When yyparse detects a syntax error, it calls the error reporting function yyerror to print
an error message (usually but not always "syntax error"). It is up to the programmer
to supply yyerror (see Chapter 4 [Parser C-Language Interface], page 79), so here is the
definition we will use:
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#include <stdio.h>

/* Called by yyparse on error. */
void
yyerror (char const *s)
{
fprintf (stderr, "%s\n", s);

}

After yyerror returns, the Bison parser may recover from the error and continue parsing
if the grammar contains a suitable error rule (see Chapter 6 [Error Recovery], page 101).
Otherwise, yyparse returns nonzero. We have not written any error rules in this example,
so any invalid input will cause the calculator program to exit. This is not clean behavior
for a real calculator, but it is adequate for the first example.

2.1.6 Running Bison to Make the Parser

Before running Bison to produce a parser, we need to decide how to arrange all the source
code in one or more source files. For such a simple example, the easiest thing is to put
everything in one file. The definitions of yylex, yyerror and main go at the end, in the
epilogue of the file (see Section 1.9 [The Overall Layout of a Bison Grammar], page 28).

For a large project, you would probably have several source files, and use make to arrange
to recompile them.

With all the source in a single file, you use the following command to convert it into a
parser file:

bison file.y

In this example the file was called ‘rpcalc.y’ (for “Reverse Polish calculator”). Bison
produces a file named ‘file.tab.c’, removing the ‘.y’ from the original file name. The
file output by Bison contains the source code for yyparse. The additional functions in the
input file (yylex, yyerror and main) are copied verbatim to the output.

2.1.7 Compiling the Parser File

Here is how to compile and run the parser file:
# List files in current directory.
$ ls

rpcalc.tab.c rpcalc.y

# Compile the Bison parser.
# ‘-lm’ tells compiler to search math library for pow.
$ cc -lm -o rpcalc rpcalc.tab.c

# List files again.
$ ls

rpcalc rpcalc.tab.c rpcalc.y

The file ‘rpcalc’ now contains the executable code. Here is an example session using
rpcalc.

$ rpcalc
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4 9 +
13
3 7 + 3 4 5 *+-
-13
3 7 + 3 4 5 * + - n Note the unary minus, ‘n’
13
5 6 / 4 n +
-3.166666667
3 4 ^ Exponentiation
81
^D End-of-file indicator
$

2.2 Infix Notation Calculator: calc

We now modify rpcalc to handle infix operators instead of postfix. Infix notation involves
the concept of operator precedence and the need for parentheses nested to arbitrary depth.
Here is the Bison code for ‘calc.y’, an infix desk-top calculator.

/* Infix notation calculator. */

%{
#define YYSTYPE double
#include <math.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);

%}

/* Bison declarations. */
%token NUM
%left ’-’ ’+’
%left ’*’ ’/’
%left NEG /* negation--unary minus */
%right ’^’ /* exponentiation */

%% /* The grammar follows. */
input: /* empty */

| input line
;

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }

;

exp: NUM { $$ = $1; }
| exp ’+’ exp { $$ = $1 + $3; }
| exp ’-’ exp { $$ = $1 - $3; }
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| exp ’*’ exp { $$ = $1 * $3; }
| exp ’/’ exp { $$ = $1 / $3; }
| ’-’ exp %prec NEG { $$ = -$2; }
| exp ’^’ exp { $$ = pow ($1, $3); }
| ’(’ exp ’)’ { $$ = $2; }

;
%%

The functions yylex, yyerror and main can be the same as before.

There are two important new features shown in this code.

In the second section (Bison declarations), %left declares token types and says they are
left-associative operators. The declarations %left and %right (right associativity) take the
place of %token which is used to declare a token type name without associativity. (These
tokens are single-character literals, which ordinarily don’t need to be declared. We declare
them here to specify the associativity.)

Operator precedence is determined by the line ordering of the declarations; the higher
the line number of the declaration (lower on the page or screen), the higher the precedence.
Hence, exponentiation has the highest precedence, unary minus (NEG) is next, followed by
‘*’ and ‘/’, and so on. See Section 5.3 [Operator Precedence], page 91.

The other important new feature is the %prec in the grammar section for the unary
minus operator. The %prec simply instructs Bison that the rule ‘| ’-’ exp’ has the same
precedence as NEG—in this case the next-to-highest. See Section 5.4 [Context-Dependent
Precedence], page 93.

Here is a sample run of ‘calc.y’:
$ calc

4 + 4.5 - (34/(8*3+-3))
6.880952381
-56 + 2

-54
3 ^ 2

9

2.3 Simple Error Recovery

Up to this point, this manual has not addressed the issue of error recovery—how to continue
parsing after the parser detects a syntax error. All we have handled is error reporting with
yyerror. Recall that by default yyparse returns after calling yyerror. This means that
an erroneous input line causes the calculator program to exit. Now we show how to rectify
this deficiency.

The Bison language itself includes the reserved word error, which may be included in
the grammar rules. In the example below it has been added to one of the alternatives for
line:

line: ’\n’
| exp ’\n’ { printf ("\t%.10g\n", $1); }
| error ’\n’ { yyerrok; }

;
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This addition to the grammar allows for simple error recovery in the event of a syntax
error. If an expression that cannot be evaluated is read, the error will be recognized by the
third rule for line, and parsing will continue. (The yyerror function is still called upon
to print its message as well.) The action executes the statement yyerrok, a macro defined
automatically by Bison; its meaning is that error recovery is complete (see Chapter 6 [Error
Recovery], page 101). Note the difference between yyerrok and yyerror; neither one is a
misprint.

This form of error recovery deals with syntax errors. There are other kinds of errors; for
example, division by zero, which raises an exception signal that is normally fatal. A real
calculator program must handle this signal and use longjmp to return to main and resume
parsing input lines; it would also have to discard the rest of the current line of input. We
won’t discuss this issue further because it is not specific to Bison programs.

2.4 Location Tracking Calculator: ltcalc

This example extends the infix notation calculator with location tracking. This feature will
be used to improve the error messages. For the sake of clarity, this example is a simple
integer calculator, since most of the work needed to use locations will be done in the lexical
analyzer.

2.4.1 Declarations for ltcalc

The C and Bison declarations for the location tracking calculator are the same as the
declarations for the infix notation calculator.

/* Location tracking calculator. */

%{
#define YYSTYPE int
#include <math.h>
int yylex (void);
void yyerror (char const *);

%}

/* Bison declarations. */
%token NUM

%left ’-’ ’+’
%left ’*’ ’/’
%left NEG
%right ’^’

%% /* The grammar follows. */

Note there are no declarations specific to locations. Defining a data type for storing lo-
cations is not needed: we will use the type provided by default (see Section 3.6.1 [Data
Types of Locations], page 61), which is a four member structure with the following integer
fields: first_line, first_column, last_line and last_column. By conventions, and in
accordance with the GNU Coding Standards and common practice, the line and column
count both start at 1.
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2.4.2 Grammar Rules for ltcalc

Whether handling locations or not has no effect on the syntax of your language. Therefore,
grammar rules for this example will be very close to those of the previous example: we will
only modify them to benefit from the new information.

Here, we will use locations to report divisions by zero, and locate the wrong expressions
or subexpressions.

input : /* empty */
| input line

;

line : ’\n’
| exp ’\n’ { printf ("%d\n", $1); }

;

exp : NUM { $$ = $1; }
| exp ’+’ exp { $$ = $1 + $3; }
| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }
| exp ’/’ exp

{
if ($3)

$$ = $1 / $3;
else

{
$$ = 1;
fprintf (stderr, "%d.%d-%d.%d: division by zero",

@3.first_line, @3.first_column,
@3.last_line, @3.last_column);

}
}

| ’-’ exp %prec NEG { $$ = -$2; }
| exp ’^’ exp { $$ = pow ($1, $3); }
| ’(’ exp ’)’ { $$ = $2; }

This code shows how to reach locations inside of semantic actions, by using the pseudo-
variables @n for rule components, and the pseudo-variable @$ for groupings.

We don’t need to assign a value to @$: the output parser does it automatically. By
default, before executing the C code of each action, @$ is set to range from the beginning
of @1 to the end of @n , for a rule with n components. This behavior can be redefined (see
Section 3.6.3 [Default Action for Locations], page 63), and for very specific rules, @$ can be
computed by hand.

2.4.3 The ltcalc Lexical Analyzer.

Until now, we relied on Bison’s defaults to enable location tracking. The next step is to
rewrite the lexical analyzer, and make it able to feed the parser with the token locations,
as it already does for semantic values.
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To this end, we must take into account every single character of the input text, to avoid
the computed locations of being fuzzy or wrong:

int
yylex (void)
{
int c;

/* Skip white space. */
while ((c = getchar ()) == ’ ’ || c == ’\t’)
++yylloc.last_column;

/* Step. */
yylloc.first_line = yylloc.last_line;
yylloc.first_column = yylloc.last_column;

/* Process numbers. */
if (isdigit (c))
{

yylval = c - ’0’;
++yylloc.last_column;
while (isdigit (c = getchar ()))
{

++yylloc.last_column;
yylval = yylval * 10 + c - ’0’;

}
ungetc (c, stdin);
return NUM;

}

/* Return end-of-input. */
if (c == EOF)
return 0;

/* Return a single char, and update location. */
if (c == ’\n’)
{

++yylloc.last_line;
yylloc.last_column = 0;

}
else
++yylloc.last_column;

return c;
}

Basically, the lexical analyzer performs the same processing as before: it skips blanks
and tabs, and reads numbers or single-character tokens. In addition, it updates yylloc,
the global variable (of type YYLTYPE) containing the token’s location.
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Now, each time this function returns a token, the parser has its number as well as its
semantic value, and its location in the text. The last needed change is to initialize yylloc,
for example in the controlling function:

int
main (void)
{
yylloc.first_line = yylloc.last_line = 1;
yylloc.first_column = yylloc.last_column = 0;
return yyparse ();

}

Remember that computing locations is not a matter of syntax. Every character must be
associated to a location update, whether it is in valid input, in comments, in literal strings,
and so on.

2.5 Multi-Function Calculator: mfcalc

Now that the basics of Bison have been discussed, it is time to move on to a more advanced
problem. The above calculators provided only five functions, ‘+’, ‘-’, ‘*’, ‘/’ and ‘^’. It
would be nice to have a calculator that provides other mathematical functions such as sin,
cos, etc.

It is easy to add new operators to the infix calculator as long as they are only single-
character literals. The lexical analyzer yylex passes back all nonnumeric characters as
tokens, so new grammar rules suffice for adding a new operator. But we want something
more flexible: built-in functions whose syntax has this form:

function_name (argument)

At the same time, we will add memory to the calculator, by allowing you to create named
variables, store values in them, and use them later. Here is a sample session with the
multi-function calculator:

$ mfcalc

pi = 3.141592653589

3.1415926536
sin(pi)

0.0000000000
alpha = beta1 = 2.3

2.3000000000
alpha

2.3000000000
ln(alpha)

0.8329091229
exp(ln(beta1))

2.3000000000
$

Note that multiple assignment and nested function calls are permitted.

2.5.1 Declarations for mfcalc

Here are the C and Bison declarations for the multi-function calculator.
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%{

#include <math.h> /* For math functions, cos(), sin(), etc. */

#include "calc.h" /* Contains definition of ‘symrec’. */

int yylex (void);

void yyerror (char const *);

%}

%union {

double val; /* For returning numbers. */

symrec *tptr; /* For returning symbol-table pointers. */

}

%token <val> NUM /* Simple double precision number. */

%token <tptr> VAR FNCT /* Variable and Function. */

%type <val> exp

%right ’=’

%left ’-’ ’+’

%left ’*’ ’/’

%left NEG /* negation--unary minus */

%right ’^’ /* exponentiation */

%% /* The grammar follows. */

The above grammar introduces only two new features of the Bison language. These
features allow semantic values to have various data types (see Section 3.5.2 [More Than
One Value Type], page 56).

The %union declaration specifies the entire list of possible types; this is instead of defining
YYSTYPE. The allowable types are now double-floats (for exp and NUM) and pointers to entries
in the symbol table. See Section 3.7.4 [The Collection of Value Types], page 66.

Since values can now have various types, it is necessary to associate a type with each
grammar symbol whose semantic value is used. These symbols are NUM, VAR, FNCT, and exp.
Their declarations are augmented with information about their data type (placed between
angle brackets).

The Bison construct %type is used for declaring nonterminal symbols, just as %token
is used for declaring token types. We have not used %type before because nonterminal
symbols are normally declared implicitly by the rules that define them. But exp must be
declared explicitly so we can specify its value type. See Section 3.7.5 [Nonterminal Symbols],
page 67.

2.5.2 Grammar Rules for mfcalc

Here are the grammar rules for the multi-function calculator. Most of them are copied
directly from calc; three rules, those which mention VAR or FNCT, are new.

input: /* empty */

| input line

;

line:

’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }

| error ’\n’ { yyerrok; }

;
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exp: NUM { $$ = $1; }

| VAR { $$ = $1->value.var; }

| VAR ’=’ exp { $$ = $3; $1->value.var = $3; }

| FNCT ’(’ exp ’)’ { $$ = (*($1->value.fnctptr))($3); }

| exp ’+’ exp { $$ = $1 + $3; }

| exp ’-’ exp { $$ = $1 - $3; }

| exp ’*’ exp { $$ = $1 * $3; }

| exp ’/’ exp { $$ = $1 / $3; }

| ’-’ exp %prec NEG { $$ = -$2; }

| exp ’^’ exp { $$ = pow ($1, $3); }

| ’(’ exp ’)’ { $$ = $2; }

;

/* End of grammar. */

%%

2.5.3 The mfcalc Symbol Table

The multi-function calculator requires a symbol table to keep track of the names and mean-
ings of variables and functions. This doesn’t affect the grammar rules (except for the
actions) or the Bison declarations, but it requires some additional C functions for support.

The symbol table itself consists of a linked list of records. Its definition, which is kept in
the header ‘calc.h’, is as follows. It provides for either functions or variables to be placed
in the table.

/* Function type. */

typedef double (*func_t) (double);

/* Data type for links in the chain of symbols. */

struct symrec

{

char *name; /* name of symbol */

int type; /* type of symbol: either VAR or FNCT */

union

{

double var; /* value of a VAR */

func_t fnctptr; /* value of a FNCT */

} value;

struct symrec *next; /* link field */

};

typedef struct symrec symrec;

/* The symbol table: a chain of ‘struct symrec’. */

extern symrec *sym_table;

symrec *putsym (char const *, int);

symrec *getsym (char const *);

The new version of main includes a call to init_table, a function that initializes the
symbol table. Here it is, and init_table as well:

#include <stdio.h>

/* Called by yyparse on error. */

void

yyerror (char const *s)

{

printf ("%s\n", s);

}
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struct init

{

char const *fname;

double (*fnct) (double);

};

struct init const arith_fncts[] =

{

"sin", sin,

"cos", cos,

"atan", atan,

"ln", log,

"exp", exp,

"sqrt", sqrt,

0, 0

};

/* The symbol table: a chain of ‘struct symrec’. */

symrec *sym_table;

/* Put arithmetic functions in table. */

void

init_table (void)

{

int i;

symrec *ptr;

for (i = 0; arith_fncts[i].fname != 0; i++)

{

ptr = putsym (arith_fncts[i].fname, FNCT);

ptr->value.fnctptr = arith_fncts[i].fnct;

}

}

int

main (void)

{

init_table ();

return yyparse ();

}

By simply editing the initialization list and adding the necessary include files, you can
add additional functions to the calculator.

Two important functions allow look-up and installation of symbols in the symbol table.
The function putsym is passed a name and the type (VAR or FNCT) of the object to be
installed. The object is linked to the front of the list, and a pointer to the object is
returned. The function getsym is passed the name of the symbol to look up. If found, a
pointer to that symbol is returned; otherwise zero is returned.

symrec *

putsym (char const *sym_name, int sym_type)

{

symrec *ptr;

ptr = (symrec *) malloc (sizeof (symrec));

ptr->name = (char *) malloc (strlen (sym_name) + 1);

strcpy (ptr->name,sym_name);

ptr->type = sym_type;

ptr->value.var = 0; /* Set value to 0 even if fctn. */
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ptr->next = (struct symrec *)sym_table;

sym_table = ptr;

return ptr;

}

symrec *

getsym (char const *sym_name)

{

symrec *ptr;

for (ptr = sym_table; ptr != (symrec *) 0;

ptr = (symrec *)ptr->next)

if (strcmp (ptr->name,sym_name) == 0)

return ptr;

return 0;

}

The function yylex must now recognize variables, numeric values, and the
single-character arithmetic operators. Strings of alphanumeric characters with a leading
letter are recognized as either variables or functions depending on what the symbol table
says about them.

The string is passed to getsym for look up in the symbol table. If the name appears in
the table, a pointer to its location and its type (VAR or FNCT) is returned to yyparse. If it
is not already in the table, then it is installed as a VAR using putsym. Again, a pointer and
its type (which must be VAR) is returned to yyparse.

No change is needed in the handling of numeric values and arithmetic operators in yylex.

#include <ctype.h>

int

yylex (void)

{

int c;

/* Ignore white space, get first nonwhite character. */

while ((c = getchar ()) == ’ ’ || c == ’\t’);

if (c == EOF)

return 0;

/* Char starts a number => parse the number. */

if (c == ’.’ || isdigit (c))

{

ungetc (c, stdin);

scanf ("%lf", &yylval.val);

return NUM;

}

/* Char starts an identifier => read the name. */

if (isalpha (c))

{

symrec *s;

static char *symbuf = 0;

static int length = 0;

int i;
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/* Initially make the buffer long enough

for a 40-character symbol name. */

if (length == 0)

length = 40, symbuf = (char *)malloc (length + 1);

i = 0;

do

{

/* If buffer is full, make it bigger. */

if (i == length)

{

length *= 2;

symbuf = (char *) realloc (symbuf, length + 1);

}

/* Add this character to the buffer. */

symbuf[i++] = c;

/* Get another character. */

c = getchar ();

}

while (isalnum (c));

ungetc (c, stdin);

symbuf[i] = ’\0’;

s = getsym (symbuf);

if (s == 0)

s = putsym (symbuf, VAR);

yylval.tptr = s;

return s->type;

}

/* Any other character is a token by itself. */

return c;

}

This program is both powerful and flexible. You may easily add new functions, and it
is a simple job to modify this code to install predefined variables such as pi or e as well.

2.6 Exercises

1. Add some new functions from ‘math.h’ to the initialization list.
2. Add another array that contains constants and their values. Then modify init_table

to add these constants to the symbol table. It will be easiest to give the constants type
VAR.

3. Make the program report an error if the user refers to an uninitialized variable in any
way except to store a value in it.
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3 Bison Grammar Files

Bison takes as input a context-free grammar specification and produces a C-language func-
tion that recognizes correct instances of the grammar.

The Bison grammar input file conventionally has a name ending in ‘.y’. See Chapter 9
[Invoking Bison], page 115.

3.1 Outline of a Bison Grammar

A Bison grammar file has four main sections, shown here with the appropriate delimiters:
%{
Prologue

%}

Bison declarations

%%
Grammar rules

%%

Epilogue

Comments enclosed in ‘/* ... */’ may appear in any of the sections. As a GNU exten-
sion, ‘//’ introduces a comment that continues until end of line.

3.1.1 The prologue

The Prologue section contains macro definitions and declarations of functions and variables
that are used in the actions in the grammar rules. These are copied to the beginning of the
parser file so that they precede the definition of yyparse. You can use ‘#include’ to get
the declarations from a header file. If you don’t need any C declarations, you may omit the
‘%{’ and ‘%}’ delimiters that bracket this section.

The Prologue section is terminated by the first occurrence of ‘%}’ that is outside a
comment, a string literal, or a character constant.

You may have more than one Prologue section, intermixed with the Bison declarations.
This allows you to have C and Bison declarations that refer to each other. For example, the
%union declaration may use types defined in a header file, and you may wish to prototype
functions that take arguments of type YYSTYPE. This can be done with two Prologue blocks,
one before and one after the %union declaration.

%{

#define _GNU_SOURCE

#include <stdio.h>

#include "ptypes.h"

%}

%union {

long int n;

tree t; /* tree is defined in ‘ptypes.h’. */

}
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%{

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(F, N, L) print_token_value (F, N, L)

%}

...

When in doubt, it is usually safer to put prologue code before all Bison declarations,
rather than after. For example, any definitions of feature test macros like _GNU_SOURCE or
_POSIX_C_SOURCE should appear before all Bison declarations, as feature test macros can
affect the behavior of Bison-generated #include directives.

3.1.2 Prologue Alternatives

(The prologue alternatives described here are experimental. More user feedback will help
to determine whether they should become permanent features.)

The functionality of Prologue sections can often be subtle and inflexible. As an alterna-
tive, Bison provides a %code directive with an explicit qualifier field, which identifies the
purpose of the code and thus the location(s) where Bison should generate it. For C/C++,
the qualifier can be omitted for the default location, or it can be one of requires, provides,
top. See Section 3.7.12 [%code], page 72.

Look again at the example of the previous section:
%{

#define _GNU_SOURCE

#include <stdio.h>

#include "ptypes.h"

%}

%union {

long int n;

tree t; /* tree is defined in ‘ptypes.h’. */

}

%{

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(F, N, L) print_token_value (F, N, L)

%}

...

Notice that there are two Prologue sections here, but there’s a subtle distinction between
their functionality. For example, if you decide to override Bison’s default definition for
YYLTYPE, in which Prologue section should you write your new definition? You should
write it in the first since Bison will insert that code into the parser source code file before
the default YYLTYPE definition. In which Prologue section should you prototype an inter-
nal function, trace_token, that accepts YYLTYPE and yytokentype as arguments? You
should prototype it in the second since Bison will insert that code after the YYLTYPE and
yytokentype definitions.

This distinction in functionality between the two Prologue sections is established by the
appearance of the %union between them. This behavior raises a few questions. First, why
should the position of a %union affect definitions related to YYLTYPE and yytokentype?
Second, what if there is no %union? In that case, the second kind of Prologue section is
not available. This behavior is not intuitive.
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To avoid this subtle %union dependency, rewrite the example using a %code top and an
unqualified %code. Let’s go ahead and add the new YYLTYPE definition and the trace_token
prototype at the same time:

%code top {

#define _GNU_SOURCE

#include <stdio.h>

/* WARNING: The following code really belongs

* in a ‘%code requires’; see below. */

#include "ptypes.h"

#define YYLTYPE YYLTYPE

typedef struct YYLTYPE

{

int first_line;

int first_column;

int last_line;

int last_column;

char *filename;

} YYLTYPE;

}

%union {

long int n;

tree t; /* tree is defined in ‘ptypes.h’. */

}

%code {

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(F, N, L) print_token_value (F, N, L)

static void trace_token (enum yytokentype token, YYLTYPE loc);

}

...

In this way, %code top and the unqualified %code achieve the same functionality as the two
kinds of Prologue sections, but it’s always explicit which kind you intend. Moreover, both
kinds are always available even in the absence of %union.

The %code top block above logically contains two parts. The first two lines before the
warning need to appear near the top of the parser source code file. The first line after the
warning is required by YYSTYPE and thus also needs to appear in the parser source code
file. However, if you’ve instructed Bison to generate a parser header file (see Section 3.7.12
[%defines], page 72), you probably want that line to appear before the YYSTYPE definition
in that header file as well. The YYLTYPE definition should also appear in the parser header
file to override the default YYLTYPE definition there.

In other words, in the %code top block above, all but the first two lines are dependency
code required by the YYSTYPE and YYLTYPE definitions. Thus, they belong in one or more
%code requires:

%code top {

#define _GNU_SOURCE

#include <stdio.h>

}

%code requires {
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#include "ptypes.h"

}

%union {

long int n;

tree t; /* tree is defined in ‘ptypes.h’. */

}

%code requires {

#define YYLTYPE YYLTYPE

typedef struct YYLTYPE

{

int first_line;

int first_column;

int last_line;

int last_column;

char *filename;

} YYLTYPE;

}

%code {

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(F, N, L) print_token_value (F, N, L)

static void trace_token (enum yytokentype token, YYLTYPE loc);

}

...

Now Bison will insert #include "ptypes.h" and the new YYLTYPE definition before the
Bison-generated YYSTYPE and YYLTYPE definitions in both the parser source code file and the
parser header file. (By the same reasoning, %code requires would also be the appropriate
place to write your own definition for YYSTYPE.)

When you are writing dependency code for YYSTYPE and YYLTYPE, you should prefer
%code requires over %code top regardless of whether you instruct Bison to generate a
parser header file. When you are writing code that you need Bison to insert only into the
parser source code file and that has no special need to appear at the top of that file, you
should prefer the unqualified %code over %code top. These practices will make the purpose
of each block of your code explicit to Bison and to other developers reading your grammar
file. Following these practices, we expect the unqualified %code and %code requires to be
the most important of the four Prologue alternatives.

At some point while developing your parser, you might decide to provide trace_token
to modules that are external to your parser. Thus, you might wish for Bison to insert
the prototype into both the parser header file and the parser source code file. Since this
function is not a dependency required by YYSTYPE or YYLTYPE, it doesn’t make sense to
move its prototype to a %code requires. More importantly, since it depends upon YYLTYPE
and yytokentype, %code requires is not sufficient. Instead, move its prototype from the
unqualified %code to a %code provides:

%code top {

#define _GNU_SOURCE

#include <stdio.h>

}

%code requires {

#include "ptypes.h"

}
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%union {

long int n;

tree t; /* tree is defined in ‘ptypes.h’. */

}

%code requires {

#define YYLTYPE YYLTYPE

typedef struct YYLTYPE

{

int first_line;

int first_column;

int last_line;

int last_column;

char *filename;

} YYLTYPE;

}

%code provides {

void trace_token (enum yytokentype token, YYLTYPE loc);

}

%code {

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(F, N, L) print_token_value (F, N, L)

}

...

Bison will insert the trace_token prototype into both the parser header file and the parser
source code file after the definitions for yytokentype, YYLTYPE, and YYSTYPE.

The above examples are careful to write directives in an order that reflects the layout
of the generated parser source code and header files: %code top, %code requires, %code
provides, and then %code. While your grammar files may generally be easier to read if
you also follow this order, Bison does not require it. Instead, Bison lets you choose an
organization that makes sense to you.

You may declare any of these directives multiple times in the grammar file. In that case,
Bison concatenates the contained code in declaration order. This is the only way in which
the position of one of these directives within the grammar file affects its functionality.

The result of the previous two properties is greater flexibility in how you may organize
your grammar file. For example, you may organize semantic-type-related directives by
semantic type:

%code requires { #include "type1.h" }

%union { type1 field1; }

%destructor { type1_free ($$); } <field1>

%printer { type1_print ($$); } <field1>

%code requires { #include "type2.h" }

%union { type2 field2; }

%destructor { type2_free ($$); } <field2>

%printer { type2_print ($$); } <field2>

You could even place each of the above directive groups in the rules section of the grammar
file next to the set of rules that uses the associated semantic type. (In the rules section, you
must terminate each of those directives with a semicolon.) And you don’t have to worry
that some directive (like a %union) in the definitions section is going to adversely affect
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their functionality in some counter-intuitive manner just because it comes first. Such an
organization is not possible using Prologue sections.

This section has been concerned with explaining the advantages of the four Prologue
alternatives over the original Yacc Prologue. However, in most cases when using these
directives, you shouldn’t need to think about all the low-level ordering issues discussed
here. Instead, you should simply use these directives to label each block of your code
according to its purpose and let Bison handle the ordering. %code is the most generic label.
Move code to %code requires, %code provides, or %code top as needed.

3.1.3 The Bison Declarations Section

The Bison declarations section contains declarations that define terminal and nonterminal
symbols, specify precedence, and so on. In some simple grammars you may not need any
declarations. See Section 3.7 [Bison Declarations], page 64.

3.1.4 The Grammar Rules Section

The grammar rules section contains one or more Bison grammar rules, and nothing else.
See Section 3.3 [Syntax of Grammar Rules], page 54.

There must always be at least one grammar rule, and the first ‘%%’ (which precedes the
grammar rules) may never be omitted even if it is the first thing in the file.

3.1.5 The epilogue

The Epilogue is copied verbatim to the end of the parser file, just as the Prologue is copied
to the beginning. This is the most convenient place to put anything that you want to have
in the parser file but which need not come before the definition of yyparse. For example,
the definitions of yylex and yyerror often go here. Because C requires functions to be
declared before being used, you often need to declare functions like yylex and yyerror in
the Prologue, even if you define them in the Epilogue. See Chapter 4 [Parser C-Language
Interface], page 79.

If the last section is empty, you may omit the ‘%%’ that separates it from the grammar
rules.

The Bison parser itself contains many macros and identifiers whose names start with
‘yy’ or ‘YY’, so it is a good idea to avoid using any such names (except those documented
in this manual) in the epilogue of the grammar file.

3.2 Symbols, Terminal and Nonterminal

Symbols in Bison grammars represent the grammatical classifications of the language.
A terminal symbol (also known as a token type) represents a class of syntactically

equivalent tokens. You use the symbol in grammar rules to mean that a token in that class
is allowed. The symbol is represented in the Bison parser by a numeric code, and the yylex
function returns a token type code to indicate what kind of token has been read. You don’t
need to know what the code value is; you can use the symbol to stand for it.

A nonterminal symbol stands for a class of syntactically equivalent groupings. The
symbol name is used in writing grammar rules. By convention, it should be all lower case.

Symbol names can contain letters, digits (not at the beginning), underscores and periods.
Periods make sense only in nonterminals.
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There are three ways of writing terminal symbols in the grammar:
• A named token type is written with an identifier, like an identifier in C. By convention,

it should be all upper case. Each such name must be defined with a Bison declaration
such as %token. See Section 3.7.2 [Token Type Names], page 64.

• A character token type (or literal character token) is written in the grammar using the
same syntax used in C for character constants; for example, ’+’ is a character token
type. A character token type doesn’t need to be declared unless you need to specify its
semantic value data type (see Section 3.5.1 [Data Types of Semantic Values], page 56),
associativity, or precedence (see Section 5.3 [Operator Precedence], page 91).
By convention, a character token type is used only to represent a token that consists of
that particular character. Thus, the token type ’+’ is used to represent the character
‘+’ as a token. Nothing enforces this convention, but if you depart from it, your program
will confuse other readers.
All the usual escape sequences used in character literals in C can be used in Bison
as well, but you must not use the null character as a character literal because its
numeric code, zero, signifies end-of-input (see Section 4.6.1 [Calling Convention for
yylex], page 81). Also, unlike standard C, trigraphs have no special meaning in Bison
character literals, nor is backslash-newline allowed.

• A literal string token is written like a C string constant; for example, "<=" is a literal
string token. A literal string token doesn’t need to be declared unless you need to specify
its semantic value data type (see Section 3.5.1 [Value Type], page 56), associativity, or
precedence (see Section 5.3 [Precedence], page 91).
You can associate the literal string token with a symbolic name as an alias, using the
%token declaration (see Section 3.7.2 [Token Declarations], page 64). If you don’t do
that, the lexical analyzer has to retrieve the token number for the literal string token
from the yytname table (see Section 4.6.1 [Calling Convention], page 81).
Warning: literal string tokens do not work in Yacc.
By convention, a literal string token is used only to represent a token that consists
of that particular string. Thus, you should use the token type "<=" to represent the
string ‘<=’ as a token. Bison does not enforce this convention, but if you depart from
it, people who read your program will be confused.
All the escape sequences used in string literals in C can be used in Bison as well,
except that you must not use a null character within a string literal. Also, unlike
Standard C, trigraphs have no special meaning in Bison string literals, nor is backslash-
newline allowed. A literal string token must contain two or more characters; for a token
containing just one character, use a character token (see above).

How you choose to write a terminal symbol has no effect on its grammatical meaning.
That depends only on where it appears in rules and on when the parser function returns
that symbol.

The value returned by yylex is always one of the terminal symbols, except that a zero
or negative value signifies end-of-input. Whichever way you write the token type in the
grammar rules, you write it the same way in the definition of yylex. The numeric code
for a character token type is simply the positive numeric code of the character, so yylex
can use the identical value to generate the requisite code, though you may need to convert
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it to unsigned char to avoid sign-extension on hosts where char is signed. Each named
token type becomes a C macro in the parser file, so yylex can use the name to stand for
the code. (This is why periods don’t make sense in terminal symbols.) See Section 4.6.1
[Calling Convention for yylex], page 81.

If yylex is defined in a separate file, you need to arrange for the token-type macro
definitions to be available there. Use the ‘-d’ option when you run Bison, so that it will
write these macro definitions into a separate header file ‘name.tab.h’ which you can include
in the other source files that need it. See Chapter 9 [Invoking Bison], page 115.

If you want to write a grammar that is portable to any Standard C host, you must use
only nonnull character tokens taken from the basic execution character set of Standard C.
This set consists of the ten digits, the 52 lower- and upper-case English letters, and the
characters in the following C-language string:

"\a\b\t\n\v\f\r !\"#%&’()*+,-./:;<=>?[\\]^_{|}~"

The yylex function and Bison must use a consistent character set and encoding for
character tokens. For example, if you run Bison in an ASCII environment, but then compile
and run the resulting program in an environment that uses an incompatible character set
like EBCDIC, the resulting program may not work because the tables generated by Bison
will assume ASCII numeric values for character tokens. It is standard practice for software
distributions to contain C source files that were generated by Bison in an ASCII environment,
so installers on platforms that are incompatible with ASCII must rebuild those files before
compiling them.

The symbol error is a terminal symbol reserved for error recovery (see Chapter 6 [Error
Recovery], page 101); you shouldn’t use it for any other purpose. In particular, yylex
should never return this value. The default value of the error token is 256, unless you
explicitly assigned 256 to one of your tokens with a %token declaration.

3.3 Syntax of Grammar Rules

A Bison grammar rule has the following general form:
result: components...

;

where result is the nonterminal symbol that this rule describes, and components are var-
ious terminal and nonterminal symbols that are put together by this rule (see Section 3.2
[Symbols], page 52).

For example,
exp: exp ’+’ exp

;

says that two groupings of type exp, with a ‘+’ token in between, can be combined into a
larger grouping of type exp.

White space in rules is significant only to separate symbols. You can add extra white
space as you wish.

Scattered among the components can be actions that determine the semantics of the
rule. An action looks like this:

{C statements}
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This is an example of braced code, that is, C code surrounded by braces, much like a
compound statement in C. Braced code can contain any sequence of C tokens, so long as
its braces are balanced. Bison does not check the braced code for correctness directly; it
merely copies the code to the output file, where the C compiler can check it.

Within braced code, the balanced-brace count is not affected by braces within comments,
string literals, or character constants, but it is affected by the C digraphs ‘<%’ and ‘%>’ that
represent braces. At the top level braced code must be terminated by ‘}’ and not by a
digraph. Bison does not look for trigraphs, so if braced code uses trigraphs you should
ensure that they do not affect the nesting of braces or the boundaries of comments, string
literals, or character constants.

Usually there is only one action and it follows the components. See Section 3.5.3 [Ac-
tions], page 57.

Multiple rules for the same result can be written separately or can be joined with the
vertical-bar character ‘|’ as follows:

result: rule1-components...
| rule2-components...
...
;

They are still considered distinct rules even when joined in this way.

If components in a rule is empty, it means that result can match the empty string. For
example, here is how to define a comma-separated sequence of zero or more exp groupings:

expseq: /* empty */
| expseq1
;

expseq1: exp
| expseq1 ’,’ exp
;

It is customary to write a comment ‘/* empty */’ in each rule with no components.

3.4 Recursive Rules

A rule is called recursive when its result nonterminal appears also on its right hand side.
Nearly all Bison grammars need to use recursion, because that is the only way to define
a sequence of any number of a particular thing. Consider this recursive definition of a
comma-separated sequence of one or more expressions:

expseq1: exp
| expseq1 ’,’ exp
;

Since the recursive use of expseq1 is the leftmost symbol in the right hand side, we call
this left recursion. By contrast, here the same construct is defined using right recursion:

expseq1: exp
| exp ’,’ expseq1
;
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Any kind of sequence can be defined using either left recursion or right recursion, but you
should always use left recursion, because it can parse a sequence of any number of elements
with bounded stack space. Right recursion uses up space on the Bison stack in proportion
to the number of elements in the sequence, because all the elements must be shifted onto the
stack before the rule can be applied even once. See Chapter 5 [The Bison Parser Algorithm],
page 89, for further explanation of this.

Indirect or mutual recursion occurs when the result of the rule does not appear directly
on its right hand side, but does appear in rules for other nonterminals which do appear on
its right hand side.

For example:
expr: primary

| primary ’+’ primary
;

primary: constant
| ’(’ expr ’)’
;

defines two mutually-recursive nonterminals, since each refers to the other.

3.5 Defining Language Semantics

The grammar rules for a language determine only the syntax. The semantics are determined
by the semantic values associated with various tokens and groupings, and by the actions
taken when various groupings are recognized.

For example, the calculator calculates properly because the value associated with each
expression is the proper number; it adds properly because the action for the grouping ‘x + y ’
is to add the numbers associated with x and y.

3.5.1 Data Types of Semantic Values

In a simple program it may be sufficient to use the same data type for the semantic values
of all language constructs. This was true in the RPN and infix calculator examples (see
Section 2.1 [Reverse Polish Notation Calculator], page 29).

Bison normally uses the type int for semantic values if your program uses the same data
type for all language constructs. To specify some other type, define YYSTYPE as a macro,
like this:

#define YYSTYPE double

YYSTYPE’s replacement list should be a type name that does not contain parentheses or
square brackets. This macro definition must go in the prologue of the grammar file (see
Section 3.1 [Outline of a Bison Grammar], page 47).

3.5.2 More Than One Value Type

In most programs, you will need different data types for different kinds of tokens and
groupings. For example, a numeric constant may need type int or long int, while a string
constant needs type char *, and an identifier might need a pointer to an entry in the symbol
table.
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To use more than one data type for semantic values in one parser, Bison requires you to
do two things:
• Specify the entire collection of possible data types, either by using the %union Bison

declaration (see Section 3.7.4 [The Collection of Value Types], page 66), or by using a
typedef or a #define to define YYSTYPE to be a union type whose member names are
the type tags.

• Choose one of those types for each symbol (terminal or nonterminal) for which seman-
tic values are used. This is done for tokens with the %token Bison declaration (see
Section 3.7.2 [Token Type Names], page 64) and for groupings with the %type Bison
declaration (see Section 3.7.5 [Nonterminal Symbols], page 67).

3.5.3 Actions

An action accompanies a syntactic rule and contains C code to be executed each time an
instance of that rule is recognized. The task of most actions is to compute a semantic value
for the grouping built by the rule from the semantic values associated with tokens or smaller
groupings.

An action consists of braced code containing C statements, and can be placed at any
position in the rule; it is executed at that position. Most rules have just one action at the
end of the rule, following all the components. Actions in the middle of a rule are tricky and
used only for special purposes (see Section 3.5.5 [Actions in Mid-Rule], page 58).

The C code in an action can refer to the semantic values of the components matched
by the rule with the construct $n , which stands for the value of the nth component. The
semantic value for the grouping being constructed is $$. Bison translates both of these
constructs into expressions of the appropriate type when it copies the actions into the
parser file. $$ is translated to a modifiable lvalue, so it can be assigned to.

Here is a typical example:
exp: ...

| exp ’+’ exp
{ $$ = $1 + $3; }

This rule constructs an exp from two smaller exp groupings connected by a plus-sign token.
In the action, $1 and $3 refer to the semantic values of the two component exp groupings,
which are the first and third symbols on the right hand side of the rule. The sum is stored
into $$ so that it becomes the semantic value of the addition-expression just recognized by
the rule. If there were a useful semantic value associated with the ‘+’ token, it could be
referred to as $2.

Note that the vertical-bar character ‘|’ is really a rule separator, and actions are attached
to a single rule. This is a difference with tools like Flex, for which ‘|’ stands for either “or”,
or “the same action as that of the next rule”. In the following example, the action is
triggered only when ‘b’ is found:

a-or-b: ’a’|’b’ { a_or_b_found = 1; };

If you don’t specify an action for a rule, Bison supplies a default: $$ = $1. Thus, the
value of the first symbol in the rule becomes the value of the whole rule. Of course, the
default action is valid only if the two data types match. There is no meaningful default
action for an empty rule; every empty rule must have an explicit action unless the rule’s
value does not matter.
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$n with n zero or negative is allowed for reference to tokens and groupings on the stack
before those that match the current rule. This is a very risky practice, and to use it reliably
you must be certain of the context in which the rule is applied. Here is a case in which you
can use this reliably:

foo: expr bar ’+’ expr { ... }
| expr bar ’-’ expr { ... }
;

bar: /* empty */
{ previous_expr = $0; }
;

As long as bar is used only in the fashion shown here, $0 always refers to the expr which
precedes bar in the definition of foo.

It is also possible to access the semantic value of the lookahead token, if any, from a
semantic action. This semantic value is stored in yylval. See Section 4.8 [Special Features
for Use in Actions], page 85.

3.5.4 Data Types of Values in Actions

If you have chosen a single data type for semantic values, the $$ and $n constructs always
have that data type.

If you have used %union to specify a variety of data types, then you must declare a
choice among these types for each terminal or nonterminal symbol that can have a semantic
value. Then each time you use $$ or $n , its data type is determined by which symbol it
refers to in the rule. In this example,

exp: ...
| exp ’+’ exp

{ $$ = $1 + $3; }

$1 and $3 refer to instances of exp, so they all have the data type declared for the nonter-
minal symbol exp. If $2 were used, it would have the data type declared for the terminal
symbol ’+’, whatever that might be.

Alternatively, you can specify the data type when you refer to the value, by inserting
‘<type>’ after the ‘$’ at the beginning of the reference. For example, if you have defined
types as shown here:

%union {
int itype;
double dtype;

}

then you can write $<itype>1 to refer to the first subunit of the rule as an integer, or
$<dtype>1 to refer to it as a double.

3.5.5 Actions in Mid-Rule

Occasionally it is useful to put an action in the middle of a rule. These actions are written
just like usual end-of-rule actions, but they are executed before the parser even recognizes
the following components.
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A mid-rule action may refer to the components preceding it using $n , but it may not
refer to subsequent components because it is run before they are parsed.

The mid-rule action itself counts as one of the components of the rule. This makes a
difference when there is another action later in the same rule (and usually there is another
at the end): you have to count the actions along with the symbols when working out which
number n to use in $n .

The mid-rule action can also have a semantic value. The action can set its value with
an assignment to $$, and actions later in the rule can refer to the value using $n . Since
there is no symbol to name the action, there is no way to declare a data type for the value
in advance, so you must use the ‘$<...>n ’ construct to specify a data type each time you
refer to this value.

There is no way to set the value of the entire rule with a mid-rule action, because
assignments to $$ do not have that effect. The only way to set the value for the entire rule
is with an ordinary action at the end of the rule.

Here is an example from a hypothetical compiler, handling a let statement that looks like
‘let (variable) statement ’ and serves to create a variable named variable temporarily
for the duration of statement. To parse this construct, we must put variable into the symbol
table while statement is parsed, then remove it afterward. Here is how it is done:

stmt: LET ’(’ var ’)’
{ $<context>$ = push_context ();
declare_variable ($3); }

stmt { $$ = $6;
pop_context ($<context>5); }

As soon as ‘let (variable)’ has been recognized, the first action is run. It saves a copy
of the current semantic context (the list of accessible variables) as its semantic value, using
alternative context in the data-type union. Then it calls declare_variable to add the
new variable to that list. Once the first action is finished, the embedded statement stmt
can be parsed. Note that the mid-rule action is component number 5, so the ‘stmt’ is
component number 6.

After the embedded statement is parsed, its semantic value becomes the value of the
entire let-statement. Then the semantic value from the earlier action is used to restore
the prior list of variables. This removes the temporary let-variable from the list so that it
won’t appear to exist while the rest of the program is parsed.

In the above example, if the parser initiates error recovery (see Chapter 6 [Error Recov-
ery], page 101) while parsing the tokens in the embedded statement stmt, it might discard
the previous semantic context $<context>5 without restoring it. Thus, $<context>5 needs
a destructor (see Section 3.7.7 [Freeing Discarded Symbols], page 67). However, Bison cur-
rently provides no means to declare a destructor specific to a particular mid-rule action’s
semantic value.

One solution is to bury the mid-rule action inside a nonterminal symbol and to declare
a destructor for that symbol:
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%type <context> let
%destructor { pop_context ($$); } let

%%

stmt: let stmt
{ $$ = $2;
pop_context ($1); }

;

let: LET ’(’ var ’)’
{ $$ = push_context ();
declare_variable ($3); }

;

Note that the action is now at the end of its rule. Any mid-rule action can be converted
to an end-of-rule action in this way, and this is what Bison actually does to implement
mid-rule actions.

Taking action before a rule is completely recognized often leads to conflicts since the
parser must commit to a parse in order to execute the action. For example, the following
two rules, without mid-rule actions, can coexist in a working parser because the parser
can shift the open-brace token and look at what follows before deciding whether there is a
declaration or not:

compound: ’{’ declarations statements ’}’
| ’{’ statements ’}’
;

But when we add a mid-rule action as follows, the rules become nonfunctional:
compound: { prepare_for_local_variables (); }

’{’ declarations statements ’}’
| ’{’ statements ’}’
;

Now the parser is forced to decide whether to run the mid-rule action when it has read no
farther than the open-brace. In other words, it must commit to using one rule or the other,
without sufficient information to do it correctly. (The open-brace token is what is called
the lookahead token at this time, since the parser is still deciding what to do about it. See
Section 5.1 [Lookahead Tokens], page 89.)

You might think that you could correct the problem by putting identical actions into
the two rules, like this:

compound: { prepare_for_local_variables (); }
’{’ declarations statements ’}’

| { prepare_for_local_variables (); }
’{’ statements ’}’

;

But this does not help, because Bison does not realize that the two actions are identical.
(Bison never tries to understand the C code in an action.)



Chapter 3: Bison Grammar Files 61

If the grammar is such that a declaration can be distinguished from a statement by the
first token (which is true in C), then one solution which does work is to put the action after
the open-brace, like this:

compound: ’{’ { prepare_for_local_variables (); }
declarations statements ’}’

| ’{’ statements ’}’
;

Now the first token of the following declaration or statement, which would in any case tell
Bison which rule to use, can still do so.

Another solution is to bury the action inside a nonterminal symbol which serves as a
subroutine:

subroutine: /* empty */
{ prepare_for_local_variables (); }

;

compound: subroutine
’{’ declarations statements ’}’

| subroutine
’{’ statements ’}’

;

Now Bison can execute the action in the rule for subroutine without deciding which rule
for compound it will eventually use.

3.6 Tracking Locations

Though grammar rules and semantic actions are enough to write a fully functional parser,
it can be useful to process some additional information, especially symbol locations.

The way locations are handled is defined by providing a data type, and actions to take
when rules are matched.

3.6.1 Data Type of Locations

Defining a data type for locations is much simpler than for semantic values, since all tokens
and groupings always use the same type.

You can specify the type of locations by defining a macro called YYLTYPE, just as you
can specify the semantic value type by defining a YYSTYPE macro (see Section 3.5.1 [Value
Type], page 56). When YYLTYPE is not defined, Bison uses a default structure type with
four members:

typedef struct YYLTYPE
{
int first_line;
int first_column;
int last_line;
int last_column;

} YYLTYPE;

At the beginning of the parsing, Bison initializes all these fields to 1 for yylloc.
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3.6.2 Actions and Locations

Actions are not only useful for defining language semantics, but also for describing the
behavior of the output parser with locations.

The most obvious way for building locations of syntactic groupings is very similar to
the way semantic values are computed. In a given rule, several constructs can be used to
access the locations of the elements being matched. The location of the nth component of
the right hand side is @n , while the location of the left hand side grouping is @$.

Here is a basic example using the default data type for locations:

exp: ...
| exp ’/’ exp

{
@$.first_column = @1.first_column;
@$.first_line = @1.first_line;
@$.last_column = @3.last_column;
@$.last_line = @3.last_line;
if ($3)

$$ = $1 / $3;
else

{
$$ = 1;
fprintf (stderr,

"Division by zero, l%d,c%d-l%d,c%d",
@3.first_line, @3.first_column,
@3.last_line, @3.last_column);

}
}

As for semantic values, there is a default action for locations that is run each time a rule
is matched. It sets the beginning of @$ to the beginning of the first symbol, and the end of
@$ to the end of the last symbol.

With this default action, the location tracking can be fully automatic. The example
above simply rewrites this way:

exp: ...
| exp ’/’ exp

{
if ($3)

$$ = $1 / $3;
else

{
$$ = 1;
fprintf (stderr,

"Division by zero, l%d,c%d-l%d,c%d",
@3.first_line, @3.first_column,
@3.last_line, @3.last_column);

}
}
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It is also possible to access the location of the lookahead token, if any, from a semantic
action. This location is stored in yylloc. See Section 4.8 [Special Features for Use in
Actions], page 85.

3.6.3 Default Action for Locations

Actually, actions are not the best place to compute locations. Since locations are much
more general than semantic values, there is room in the output parser to redefine the
default action to take for each rule. The YYLLOC_DEFAULT macro is invoked each time a
rule is matched, before the associated action is run. It is also invoked while processing a
syntax error, to compute the error’s location. Before reporting an unresolvable syntactic
ambiguity, a GLR parser invokes YYLLOC_DEFAULT recursively to compute the location of
that ambiguity.

Most of the time, this macro is general enough to suppress location dedicated code from
semantic actions.

The YYLLOC_DEFAULT macro takes three parameters. The first one is the location of the
grouping (the result of the computation). When a rule is matched, the second parameter
identifies locations of all right hand side elements of the rule being matched, and the third
parameter is the size of the rule’s right hand side. When a GLR parser reports an ambiguity,
which of multiple candidate right hand sides it passes to YYLLOC_DEFAULT is undefined.
When processing a syntax error, the second parameter identifies locations of the symbols
that were discarded during error processing, and the third parameter is the number of
discarded symbols.

By default, YYLLOC_DEFAULT is defined this way:
# define YYLLOC_DEFAULT(Current, Rhs, N) \

do \

if (N) \

{ \

(Current).first_line = YYRHSLOC(Rhs, 1).first_line; \

(Current).first_column = YYRHSLOC(Rhs, 1).first_column; \

(Current).last_line = YYRHSLOC(Rhs, N).last_line; \

(Current).last_column = YYRHSLOC(Rhs, N).last_column; \

} \

else \

{ \

(Current).first_line = (Current).last_line = \

YYRHSLOC(Rhs, 0).last_line; \

(Current).first_column = (Current).last_column = \

YYRHSLOC(Rhs, 0).last_column; \

} \

while (0)

where YYRHSLOC (rhs, k) is the location of the kth symbol in rhs when k is positive,
and the location of the symbol just before the reduction when k and n are both zero.

When defining YYLLOC_DEFAULT, you should consider that:

• All arguments are free of side-effects. However, only the first one (the result) should
be modified by YYLLOC_DEFAULT.

• For consistency with semantic actions, valid indexes within the right hand side range
from 1 to n. When n is zero, only 0 is a valid index, and it refers to the symbol just
before the reduction. During error processing n is always positive.
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• Your macro should parenthesize its arguments, if need be, since the actual arguments
may not be surrounded by parentheses. Also, your macro should expand to something
that can be used as a single statement when it is followed by a semicolon.

3.7 Bison Declarations

The Bison declarations section of a Bison grammar defines the symbols used in formulating
the grammar and the data types of semantic values. See Section 3.2 [Symbols], page 52.

All token type names (but not single-character literal tokens such as ’+’ and ’*’) must
be declared. Nonterminal symbols must be declared if you need to specify which data type
to use for the semantic value (see Section 3.5.2 [More Than One Value Type], page 56).

The first rule in the file also specifies the start symbol, by default. If you want some other
symbol to be the start symbol, you must declare it explicitly (see Section 1.1 [Languages
and Context-Free Grammars], page 17).

3.7.1 Require a Version of Bison

You may require the minimum version of Bison to process the grammar. If the requirement
is not met, bison exits with an error (exit status 63).

%require "version"

3.7.2 Token Type Names

The basic way to declare a token type name (terminal symbol) is as follows:
%token name

Bison will convert this into a #define directive in the parser, so that the function yylex
(if it is in this file) can use the name name to stand for this token type’s code.

Alternatively, you can use %left, %right, or %nonassoc instead of %token, if you wish
to specify associativity and precedence. See Section 3.7.3 [Operator Precedence], page 65.

You can explicitly specify the numeric code for a token type by appending a nonnegative
decimal or hexadecimal integer value in the field immediately following the token name:

%token NUM 300
%token XNUM 0x12d // a GNU extension

It is generally best, however, to let Bison choose the numeric codes for all token types.
Bison will automatically select codes that don’t conflict with each other or with normal
characters.

In the event that the stack type is a union, you must augment the %token or other
token declaration to include the data type alternative delimited by angle-brackets (see
Section 3.5.2 [More Than One Value Type], page 56).

For example:
%union { /* define stack type */
double val;
symrec *tptr;

}
%token <val> NUM /* define token NUM and its type */

You can associate a literal string token with a token type name by writing the literal
string at the end of a %token declaration which declares the name. For example:
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%token arrow "=>"

For example, a grammar for the C language might specify these names with equivalent
literal string tokens:

%token <operator> OR "||"
%token <operator> LE 134 "<="
%left OR "<="

Once you equate the literal string and the token name, you can use them interchangeably in
further declarations or the grammar rules. The yylex function can use the token name or the
literal string to obtain the token type code number (see Section 4.6.1 [Calling Convention],
page 81). Syntax error messages passed to yyerror from the parser will reference the literal
string instead of the token name.

The token numbered as 0 corresponds to end of file; the following line allows for nicer
error messages referring to “end of file” instead of “$end”:

%token END 0 "end of file"

3.7.3 Operator Precedence

Use the %left, %right or %nonassoc declaration to declare a token and specify its prece-
dence and associativity, all at once. These are called precedence declarations. See Sec-
tion 5.3 [Operator Precedence], page 91, for general information on operator precedence.

The syntax of a precedence declaration is nearly the same as that of %token: either

%left symbols...

or

%left <type> symbols...

And indeed any of these declarations serves the purposes of %token. But in addition,
they specify the associativity and relative precedence for all the symbols:

• The associativity of an operator op determines how repeated uses of the operator nest:
whether ‘x op y op z ’ is parsed by grouping x with y first or by grouping y with z
first. %left specifies left-associativity (grouping x with y first) and %right specifies
right-associativity (grouping y with z first). %nonassoc specifies no associativity, which
means that ‘x op y op z ’ is considered a syntax error.

• The precedence of an operator determines how it nests with other operators. All
the tokens declared in a single precedence declaration have equal precedence and nest
together according to their associativity. When two tokens declared in different prece-
dence declarations associate, the one declared later has the higher precedence and is
grouped first.

For backward compatibility, there is a confusing difference between the argument lists
of %token and precedence declarations. Only a %token can associate a literal string with a
token type name. A precedence declaration always interprets a literal string as a reference
to a separate token. For example:

%left OR "<=" // Does not declare an alias.
%left OR 134 "<=" 135 // Declares 134 for OR and 135 for "<=".
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3.7.4 The Collection of Value Types

The %union declaration specifies the entire collection of possible data types for semantic
values. The keyword %union is followed by braced code containing the same thing that goes
inside a union in C.

For example:

%union {
double val;
symrec *tptr;

}

This says that the two alternative types are double and symrec *. They are given names
val and tptr; these names are used in the %token and %type declarations to pick one of
the types for a terminal or nonterminal symbol (see Section 3.7.5 [Nonterminal Symbols],
page 67).

As an extension to POSIX, a tag is allowed after the union. For example:

%union value {
double val;
symrec *tptr;

}

specifies the union tag value, so the corresponding C type is union value. If you do not
specify a tag, it defaults to YYSTYPE.

As another extension to POSIX, you may specify multiple %union declarations; their
contents are concatenated. However, only the first %union declaration can specify a tag.

Note that, unlike making a union declaration in C, you need not write a semicolon after
the closing brace.

Instead of %union, you can define and use your own union type YYSTYPE if your grammar
contains at least one ‘<type>’ tag. For example, you can put the following into a header
file ‘parser.h’:

union YYSTYPE {
double val;
symrec *tptr;

};
typedef union YYSTYPE YYSTYPE;

and then your grammar can use the following instead of %union:

%{
#include "parser.h"
%}
%type <val> expr
%token <tptr> ID

3.7.5 Nonterminal Symbols

When you use %union to specify multiple value types, you must declare the value type of
each nonterminal symbol for which values are used. This is done with a %type declaration,
like this:
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%type <type> nonterminal...

Here nonterminal is the name of a nonterminal symbol, and type is the name given in the
%union to the alternative that you want (see Section 3.7.4 [The Collection of Value Types],
page 66). You can give any number of nonterminal symbols in the same %type declaration,
if they have the same value type. Use spaces to separate the symbol names.

You can also declare the value type of a terminal symbol. To do this, use the same <type>
construction in a declaration for the terminal symbol. All kinds of token declarations allow
<type>.

3.7.6 Performing Actions before Parsing

Sometimes your parser needs to perform some initializations before parsing. The %initial-
action directive allows for such arbitrary code.

[Directive]%initial-action { code }
Declare that the braced code must be invoked before parsing each time yyparse is
called. The code may use $$ and @$ — initial value and location of the lookahead —
and the %parse-param.

For instance, if your locations use a file name, you may use
%parse-param { char const *file_name };
%initial-action
{
@$.initialize (file_name);

};

3.7.7 Freeing Discarded Symbols

During error recovery (see Chapter 6 [Error Recovery], page 101), symbols already pushed
on the stack and tokens coming from the rest of the file are discarded until the parser falls
on its feet. If the parser runs out of memory, or if it returns via YYABORT or YYACCEPT, all
the symbols on the stack must be discarded. Even if the parser succeeds, it must discard
the start symbol.

When discarded symbols convey heap based information, this memory is lost. While
this behavior can be tolerable for batch parsers, such as in traditional compilers, it is unac-
ceptable for programs like shells or protocol implementations that may parse and execute
indefinitely.

The %destructor directive defines code that is called when a symbol is automatically
discarded.

[Directive]%destructor { code } symbols
Invoke the braced code whenever the parser discards one of the symbols. Within
code, $$ designates the semantic value associated with the discarded symbol, and
@$ designates its location. The additional parser parameters are also available (see
Section 4.1 [The Parser Function yyparse], page 79).
When a symbol is listed among symbols, its %destructor is called a per-symbol
%destructor. You may also define a per-type %destructor by listing a semantic
type tag among symbols. In that case, the parser will invoke this code whenever it
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discards any grammar symbol that has that semantic type tag unless that symbol has
its own per-symbol %destructor.
Finally, you can define two different kinds of default %destructors. (These default
forms are experimental. More user feedback will help to determine whether they
should become permanent features.) You can place each of <*> and <> in the symbols
list of exactly one %destructor declaration in your grammar file. The parser will
invoke the code associated with one of these whenever it discards any user-defined
grammar symbol that has no per-symbol and no per-type %destructor. The parser
uses the code for <*> in the case of such a grammar symbol for which you have formally
declared a semantic type tag (%type counts as such a declaration, but $<tag>$ does
not). The parser uses the code for <> in the case of such a grammar symbol that has
no declared semantic type tag.

For example:
%union { char *string; }

%token <string> STRING1

%token <string> STRING2

%type <string> string1

%type <string> string2

%union { char character; }

%token <character> CHR

%type <character> chr

%token TAGLESS

%destructor { } <character>

%destructor { free ($$); } <*>

%destructor { free ($$); printf ("%d", @$.first_line); } STRING1 string1

%destructor { printf ("Discarding tagless symbol.\n"); } <>

guarantees that, when the parser discards any user-defined symbol that has a semantic type
tag other than <character>, it passes its semantic value to free by default. However, when
the parser discards a STRING1 or a string1, it also prints its line number to stdout. It
performs only the second %destructor in this case, so it invokes free only once. Finally,
the parser merely prints a message whenever it discards any symbol, such as TAGLESS, that
has no semantic type tag.

A Bison-generated parser invokes the default %destructors only for user-defined as
opposed to Bison-defined symbols. For example, the parser will not invoke either kind
of default %destructor for the special Bison-defined symbols $accept, $undefined, or
$end (see Appendix A [Bison Symbols], page 145), none of which you can reference in
your grammar. It also will not invoke either for the error token (see Appendix A [error],
page 145), which is always defined by Bison regardless of whether you reference it in your
grammar. However, it may invoke one of them for the end token (token 0) if you redefine
it from $end to, for example, END:

%token END 0

Finally, Bison will never invoke a %destructor for an unreferenced mid-rule semantic
value (see Section 3.5.5 [Actions in Mid-Rule], page 58). That is, Bison does not consider
a mid-rule to have a semantic value if you do not reference $$ in the mid-rule’s action
or $n (where n is the RHS symbol position of the mid-rule) in any later action in that
rule. However, if you do reference either, the Bison-generated parser will invoke the <>
%destructor whenever it discards the mid-rule symbol.
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Discarded symbols are the following:
• stacked symbols popped during the first phase of error recovery,
• incoming terminals during the second phase of error recovery,
• the current lookahead and the entire stack (except the current right-hand side symbols)

when the parser returns immediately, and
• the start symbol, when the parser succeeds.

The parser can return immediately because of an explicit call to YYABORT or YYACCEPT,
or failed error recovery, or memory exhaustion.

Right-hand side symbols of a rule that explicitly triggers a syntax error via YYERROR are
not discarded automatically. As a rule of thumb, destructors are invoked only when user
actions cannot manage the memory.

3.7.8 Suppressing Conflict Warnings

Bison normally warns if there are any conflicts in the grammar (see Section 5.2 [Shift/Reduce
Conflicts], page 90), but most real grammars have harmless shift/reduce conflicts which are
resolved in a predictable way and would be difficult to eliminate. It is desirable to suppress
the warning about these conflicts unless the number of conflicts changes. You can do this
with the %expect declaration.

The declaration looks like this:
%expect n

Here n is a decimal integer. The declaration says there should be n shift/reduce conflicts
and no reduce/reduce conflicts. Bison reports an error if the number of shift/reduce conflicts
differs from n, or if there are any reduce/reduce conflicts.

For normal LALR(1) parsers, reduce/reduce conflicts are more serious, and should be
eliminated entirely. Bison will always report reduce/reduce conflicts for these parsers. With
GLR parsers, however, both kinds of conflicts are routine; otherwise, there would be no
need to use GLR parsing. Therefore, it is also possible to specify an expected number of
reduce/reduce conflicts in GLR parsers, using the declaration:

%expect-rr n

In general, using %expect involves these steps:
• Compile your grammar without %expect. Use the ‘-v’ option to get a verbose list of

where the conflicts occur. Bison will also print the number of conflicts.
• Check each of the conflicts to make sure that Bison’s default resolution is what you

really want. If not, rewrite the grammar and go back to the beginning.
• Add an %expect declaration, copying the number n from the number which Bison

printed. With GLR parsers, add an %expect-rr declaration as well.

Now Bison will warn you if you introduce an unexpected conflict, but will keep silent
otherwise.

3.7.9 The Start-Symbol

Bison assumes by default that the start symbol for the grammar is the first nonterminal
specified in the grammar specification section. The programmer may override this restriction
with the %start declaration as follows:

%start symbol



70 Bison 2.4.1

3.7.10 A Pure (Reentrant) Parser

A reentrant program is one which does not alter in the course of execution; in other words, it
consists entirely of pure (read-only) code. Reentrancy is important whenever asynchronous
execution is possible; for example, a nonreentrant program may not be safe to call from a
signal handler. In systems with multiple threads of control, a nonreentrant program must
be called only within interlocks.

Normally, Bison generates a parser which is not reentrant. This is suitable for most
uses, and it permits compatibility with Yacc. (The standard Yacc interfaces are inherently
nonreentrant, because they use statically allocated variables for communication with yylex,
including yylval and yylloc.)

Alternatively, you can generate a pure, reentrant parser. The Bison declaration %define
api.pure says that you want the parser to be reentrant. It looks like this:

%define api.pure

The result is that the communication variables yylval and yylloc become local variables
in yyparse, and a different calling convention is used for the lexical analyzer function yylex.
See Section 4.6.4 [Calling Conventions for Pure Parsers], page 83, for the details of this.
The variable yynerrs becomes local in yyparse in pull mode but it becomes a member of
yypstate in push mode. (see Section 4.7 [The Error Reporting Function yyerror], page 84).
The convention for calling yyparse itself is unchanged.

Whether the parser is pure has nothing to do with the grammar rules. You can generate
either a pure parser or a nonreentrant parser from any valid grammar.

3.7.11 A Push Parser

(The current push parsing interface is experimental and may evolve. More user feedback
will help to stabilize it.)

A pull parser is called once and it takes control until all its input is completely parsed.
A push parser, on the other hand, is called each time a new token is made available.

A push parser is typically useful when the parser is part of a main event loop in the
client’s application. This is typically a requirement of a GUI, when the main event loop
needs to be triggered within a certain time period.

Normally, Bison generates a pull parser. The following Bison declaration says that you
want the parser to be a push parser (see Section 3.7.12 [%define api.push pull], page 72):

%define api.push_pull "push"

In almost all cases, you want to ensure that your push parser is also a pure parser (see
Section 3.7.10 [A Pure (Reentrant) Parser], page 70). The only time you should create an
impure push parser is to have backwards compatibility with the impure Yacc pull mode
interface. Unless you know what you are doing, your declarations should look like this:

%define api.pure
%define api.push_pull "push"

There is a major notable functional difference between the pure push parser and the
impure push parser. It is acceptable for a pure push parser to have many parser instances,
of the same type of parser, in memory at the same time. An impure push parser should
only use one parser at a time.
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When a push parser is selected, Bison will generate some new symbols in the generated
parser. yypstate is a structure that the generated parser uses to store the parser’s state.
yypstate_new is the function that will create a new parser instance. yypstate_delete will
free the resources associated with the corresponding parser instance. Finally, yypush_parse
is the function that should be called whenever a token is available to provide the parser. A
trivial example of using a pure push parser would look like this:

int status;
yypstate *ps = yypstate_new ();
do {
status = yypush_parse (ps, yylex (), NULL);

} while (status == YYPUSH_MORE);
yypstate_delete (ps);

If the user decided to use an impure push parser, a few things about the generated
parser will change. The yychar variable becomes a global variable instead of a variable in
the yypush_parse function. For this reason, the signature of the yypush_parse function is
changed to remove the token as a parameter. A nonreentrant push parser example would
thus look like this:

extern int yychar;
int status;
yypstate *ps = yypstate_new ();
do {
yychar = yylex ();
status = yypush_parse (ps);

} while (status == YYPUSH_MORE);
yypstate_delete (ps);

That’s it. Notice the next token is put into the global variable yychar for use by the
next invocation of the yypush_parse function.

Bison also supports both the push parser interface along with the pull parser inter-
face in the same generated parser. In order to get this functionality, you should replace
the %define api.push_pull "push" declaration with the %define api.push_pull "both"
declaration. Doing this will create all of the symbols mentioned earlier along with the two
extra symbols, yyparse and yypull_parse. yyparse can be used exactly as it normally
would be used. However, the user should note that it is implemented in the generated
parser by calling yypull_parse. This makes the yyparse function that is generated with
the %define api.push_pull "both" declaration slower than the normal yyparse function.
If the user calls the yypull_parse function it will parse the rest of the input stream. It is
possible to yypush_parse tokens to select a subgrammar and then yypull_parse the rest
of the input stream. If you would like to switch back and forth between between parsing
styles, you would have to write your own yypull_parse function that knows when to quit
looking for input. An example of using the yypull_parse function would look like this:

yypstate *ps = yypstate_new ();
yypull_parse (ps); /* Will call the lexer */
yypstate_delete (ps);

Adding the %define api.pure declaration does exactly the same thing to the generated
parser with %define api.push_pull "both" as it did for %define api.push_pull "push".



72 Bison 2.4.1

3.7.12 Bison Declaration Summary

Here is a summary of the declarations used to define a grammar:

[Directive]%union
Declare the collection of data types that semantic values may have (see Section 3.7.4
[The Collection of Value Types], page 66).

[Directive]%token
Declare a terminal symbol (token type name) with no precedence or associativity
specified (see Section 3.7.2 [Token Type Names], page 64).

[Directive]%right
Declare a terminal symbol (token type name) that is right-associative (see
Section 3.7.3 [Operator Precedence], page 65).

[Directive]%left
Declare a terminal symbol (token type name) that is left-associative (see Section 3.7.3
[Operator Precedence], page 65).

[Directive]%nonassoc
Declare a terminal symbol (token type name) that is nonassociative (see Section 3.7.3
[Operator Precedence], page 65). Using it in a way that would be associative is a
syntax error.

[Directive]%type
Declare the type of semantic values for a nonterminal symbol (see Section 3.7.5 [Non-
terminal Symbols], page 67).

[Directive]%start
Specify the grammar’s start symbol (see Section 3.7.9 [The Start-Symbol], page 70).

[Directive]%expect
Declare the expected number of shift-reduce conflicts (see Section 3.7.8 [Suppressing
Conflict Warnings], page 69).

In order to change the behavior of bison, use the following directives:

[Directive]%code {code}
This is the unqualified form of the %code directive. It inserts code verbatim at a
language-dependent default location in the output1.
For C/C++, the default location is the parser source code file after the usual contents of
the parser header file. Thus, %code replaces the traditional Yacc prologue, %{code%},
for most purposes. For a detailed discussion, see Section 3.1.2 [Prologue Alternatives],
page 48.
For Java, the default location is inside the parser class.
(Like all the Yacc prologue alternatives, this directive is experimental. More user
feedback will help to determine whether it should become a permanent feature.)

1 The default location is actually skeleton-dependent; writers of non-standard skeletons however should
choose the default location consistently with the behavior of the standard Bison skeletons.
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[Directive]%code qualifier {code}
This is the qualified form of the %code directive. If you need to specify location-
sensitive verbatim code that does not belong at the default location selected by the
unqualified %code form, use this form instead.
qualifier identifies the purpose of code and thus the location(s) where Bison should
generate it. Not all values of qualifier are available for all target languages:
• requires

• Language(s): C, C++
• Purpose: This is the best place to write dependency code required for

YYSTYPE and YYLTYPE. In other words, it’s the best place to define types
referenced in %union directives, and it’s the best place to override Bison’s
default YYSTYPE and YYLTYPE definitions.

• Location(s): The parser header file and the parser source code file before the
Bison-generated YYSTYPE and YYLTYPE definitions.

• provides
• Language(s): C, C++
• Purpose: This is the best place to write additional definitions and declara-

tions that should be provided to other modules.
• Location(s): The parser header file and the parser source code file after the

Bison-generated YYSTYPE, YYLTYPE, and token definitions.
• top

• Language(s): C, C++
• Purpose: The unqualified %code or %code requires should usually be more

appropriate than %code top. However, occasionally it is necessary to insert
code much nearer the top of the parser source code file. For example:

%code top {

#define _GNU_SOURCE

#include <stdio.h>

}

• Location(s): Near the top of the parser source code file.
• imports

• Language(s): Java
• Purpose: This is the best place to write Java import directives.
• Location(s): The parser Java file after any Java package directive and before

any class definitions.

(Like all the Yacc prologue alternatives, this directive is experimental. More user
feedback will help to determine whether it should become a permanent feature.)
For a detailed discussion of how to use %code in place of the traditional Yacc prologue
for C/C++, see Section 3.1.2 [Prologue Alternatives], page 48.

[Directive]%debug
In the parser file, define the macro YYDEBUG to 1 if it is not already defined, so that
the debugging facilities are compiled.
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See Section 8.2 [Tracing Your Parser], page 113.

[Directive]%define variable
[Directive]%define variable "value"

Define a variable to adjust Bison’s behavior. The possible choices for variable, as well
as their meanings, depend on the selected target language and/or the parser skeleton
(see Section 3.7.12 [%language], page 72, see Section 3.7.12 [%skeleton], page 72).
Bison will warn if a variable is defined multiple times.
Omitting "value" is always equivalent to specifying it as "".
Some variables may be used as Booleans. In this case, Bison will complain if the
variable definition does not meet one of the following four conditions:
1. "value" is "true"
2. "value" is omitted (or is ""). This is equivalent to "true".
3. "value" is "false".
4. variable is never defined. In this case, Bison selects a default value, which may

depend on the selected target language and/or parser skeleton.

Some of the accepted variables are:
• api.pure

• Language(s): C
• Purpose: Request a pure (reentrant) parser program. See Section 3.7.10 [A

Pure (Reentrant) Parser], page 70.
• Accepted Values: Boolean
• Default Value: "false"

• api.push pull
• Language(s): C (LALR(1) only)
• Purpose: Requests a pull parser, a push parser, or both. See Section 3.7.11

[A Push Parser], page 70. (The current push parsing interface is experimen-
tal and may evolve. More user feedback will help to stabilize it.)

• Accepted Values: "pull", "push", "both"
• Default Value: "pull"

• lr.keep unreachable states
• Language(s): all
• Purpose: Requests that Bison allow unreachable parser states to remain in

the parser tables. Bison considers a state to be unreachable if there exists no
sequence of transitions from the start state to that state. A state can become
unreachable during conflict resolution if Bison disables a shift action leading
to it from a predecessor state. Keeping unreachable states is sometimes
useful for analysis purposes, but they are useless in the generated parser.

• Accepted Values: Boolean
• Default Value: "false"
• Caveats:
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• Unreachable states may contain conflicts and may use rules not used in
any other state. Thus, keeping unreachable states may induce warnings
that are irrelevant to your parser’s behavior, and it may eliminate warn-
ings that are relevant. Of course, the change in warnings may actually
be relevant to a parser table analysis that wants to keep unreachable
states, so this behavior will likely remain in future Bison releases.

• While Bison is able to remove unreachable states, it is not guaranteed
to remove other kinds of useless states. Specifically, when Bison disables
reduce actions during conflict resolution, some goto actions may become
useless, and thus some additional states may become useless. If Bison
were to compute which goto actions were useless and then disable those
actions, it could identify such states as unreachable and then remove
those states. However, Bison does not compute which goto actions are
useless.

• namespace
• Languages(s): C++
• Purpose: Specifies the namespace for the parser class. For example, if you

specify:
%define namespace "foo::bar"

Bison uses foo::bar verbatim in references such as:
foo::bar::parser::semantic_type

However, to open a namespace, Bison removes any leading :: and then splits
on any remaining occurrences:

namespace foo { namespace bar {

class position;

class location;

} }

• Accepted Values: Any absolute or relative C++ namespace reference without
a trailing "::". For example, "foo" or "::foo::bar".

• Default Value: The value specified by %name-prefix, which defaults to yy.
This usage of %name-prefix is for backward compatibility and can be con-
fusing since %name-prefix also specifies the textual prefix for the lexical
analyzer function. Thus, if you specify %name-prefix, it is best to also
specify %define namespace so that %name-prefix only affects the lexical
analyzer function. For example, if you specify:

%define namespace "foo"

%name-prefix "bar::"

The parser namespace is foo and yylex is referenced as bar::lex.

[Directive]%defines
Write a header file containing macro definitions for the token type names defined in
the grammar as well as a few other declarations. If the parser output file is named
‘name.c’ then this file is named ‘name.h’.
For C parsers, the output header declares YYSTYPE unless YYSTYPE is already defined
as a macro or you have used a <type> tag without using %union. Therefore, if you
are using a %union (see Section 3.5.2 [More Than One Value Type], page 56) with
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components that require other definitions, or if you have defined a YYSTYPE macro
or type definition (see Section 3.5.1 [Data Types of Semantic Values], page 56), you
need to arrange for these definitions to be propagated to all modules, e.g., by putting
them in a prerequisite header that is included both by your parser and by any other
module that needs YYSTYPE.
Unless your parser is pure, the output header declares yylval as an external variable.
See Section 3.7.10 [A Pure (Reentrant) Parser], page 70.
If you have also used locations, the output header declares YYLTYPE and yylloc using
a protocol similar to that of the YYSTYPE macro and yylval. See Section 3.6 [Tracking
Locations], page 61.
This output file is normally essential if you wish to put the definition of yylex in a
separate source file, because yylex typically needs to be able to refer to the above-
mentioned declarations and to the token type codes. See Section 4.6.2 [Semantic
Values of Tokens], page 82.
If you have declared %code requires or %code provides, the output header also
contains their code. See Section 3.7.12 [%code], page 72.

[Directive]%defines defines-file
Same as above, but save in the file defines-file.

[Directive]%destructor
Specify how the parser should reclaim the memory associated to discarded symbols.
See Section 3.7.7 [Freeing Discarded Symbols], page 67.

[Directive]%file-prefix "prefix"
Specify a prefix to use for all Bison output file names. The names are chosen as if the
input file were named ‘prefix.y’.

[Directive]%language "language"
Specify the programming language for the generated parser. Currently supported
languages include C, C++, and Java. language is case-insensitive.
This directive is experimental and its effect may be modified in future releases.

[Directive]%locations
Generate the code processing the locations (see Section 4.8 [Special Features for Use
in Actions], page 85). This mode is enabled as soon as the grammar uses the special
‘@n ’ tokens, but if your grammar does not use it, using ‘%locations’ allows for more
accurate syntax error messages.

[Directive]%name-prefix "prefix"
Rename the external symbols used in the parser so that they start with prefix in-
stead of ‘yy’. The precise list of symbols renamed in C parsers is yyparse, yylex,
yyerror, yynerrs, yylval, yychar, yydebug, and (if locations are used) yylloc.
If you use a push parser, yypush_parse, yypull_parse, yypstate, yypstate_new
and yypstate_delete will also be renamed. For example, if you use ‘%name-prefix
"c_"’, the names become c_parse, c_lex, and so on. For C++ parsers, see the
%define namespace documentation in this section. See Section 3.8 [Multiple Parsers
in the Same Program], page 78.
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[Directive]%no-lines
Don’t generate any #line preprocessor commands in the parser file. Ordinarily Bison
writes these commands in the parser file so that the C compiler and debuggers will
associate errors and object code with your source file (the grammar file). This direc-
tive causes them to associate errors with the parser file, treating it an independent
source file in its own right.

[Directive]%output "file"
Specify file for the parser file.

[Directive]%pure-parser
Deprecated version of %define api.pure (see Section 3.7.12 [%define], page 72), for
which Bison is more careful to warn about unreasonable usage.

[Directive]%require "version"
Require version version or higher of Bison. See Section 3.7.1 [Require a Version of
Bison], page 64.

[Directive]%skeleton "file"
Specify the skeleton to use.

If file does not contain a /, file is the name of a skeleton file in the Bison installation
directory. If it does, file is an absolute file name or a file name relative to the directory
of the grammar file. This is similar to how most shells resolve commands.

[Directive]%token-table
Generate an array of token names in the parser file. The name of the array is yytname;
yytname[i] is the name of the token whose internal Bison token code number is i.
The first three elements of yytname correspond to the predefined tokens "$end",
"error", and "$undefined"; after these come the symbols defined in the grammar
file.

The name in the table includes all the characters needed to represent the token in
Bison. For single-character literals and literal strings, this includes the surrounding
quoting characters and any escape sequences. For example, the Bison single-character
literal ’+’ corresponds to a three-character name, represented in C as "’+’"; and
the Bison two-character literal string "\\/" corresponds to a five-character name,
represented in C as "\"\\\\/\"".

When you specify %token-table, Bison also generates macro definitions for macros
YYNTOKENS, YYNNTS, and YYNRULES, and YYNSTATES:

YYNTOKENS
The highest token number, plus one.

YYNNTS The number of nonterminal symbols.

YYNRULES The number of grammar rules,

YYNSTATES
The number of parser states (see Section 5.5 [Parser States], page 93).
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[Directive]%verbose
Write an extra output file containing verbose descriptions of the parser states and
what is done for each type of lookahead token in that state. See Section 8.1 [Under-
standing Your Parser], page 107, for more information.

[Directive]%yacc
Pretend the option ‘--yacc’ was given, i.e., imitate Yacc, including its naming con-
ventions. See Section 9.1 [Bison Options], page 115, for more.

3.8 Multiple Parsers in the Same Program

Most programs that use Bison parse only one language and therefore contain only one Bison
parser. But what if you want to parse more than one language with the same program?
Then you need to avoid a name conflict between different definitions of yyparse, yylval,
and so on.

The easy way to do this is to use the option ‘-p prefix ’ (see Chapter 9 [Invoking Bison],
page 115). This renames the interface functions and variables of the Bison parser to start
with prefix instead of ‘yy’. You can use this to give each parser distinct names that do not
conflict.

The precise list of symbols renamed is yyparse, yylex, yyerror, yynerrs, yylval,
yylloc, yychar and yydebug. If you use a push parser, yypush_parse, yypull_parse,
yypstate, yypstate_new and yypstate_delete will also be renamed. For example, if you
use ‘-p c’, the names become cparse, clex, and so on.

All the other variables and macros associated with Bison are not renamed. These others
are not global; there is no conflict if the same name is used in different parsers. For example,
YYSTYPE is not renamed, but defining this in different ways in different parsers causes no
trouble (see Section 3.5.1 [Data Types of Semantic Values], page 56).

The ‘-p’ option works by adding macro definitions to the beginning of the parser source
file, defining yyparse as prefixparse, and so on. This effectively substitutes one name for
the other in the entire parser file.
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4 Parser C-Language Interface

The Bison parser is actually a C function named yyparse. Here we describe the interface
conventions of yyparse and the other functions that it needs to use.

Keep in mind that the parser uses many C identifiers starting with ‘yy’ and ‘YY’ for
internal purposes. If you use such an identifier (aside from those in this manual) in an
action or in epilogue in the grammar file, you are likely to run into trouble.

4.1 The Parser Function yyparse

You call the function yyparse to cause parsing to occur. This function reads tokens,
executes actions, and ultimately returns when it encounters end-of-input or an unrecoverable
syntax error. You can also write an action which directs yyparse to return immediately
without reading further.

[Function]int yyparse (void)
The value returned by yyparse is 0 if parsing was successful (return is due to end-of-
input).
The value is 1 if parsing failed because of invalid input, i.e., input that contains a
syntax error or that causes YYABORT to be invoked.
The value is 2 if parsing failed due to memory exhaustion.

In an action, you can cause immediate return from yyparse by using these macros:

[Macro]YYACCEPT
Return immediately with value 0 (to report success).

[Macro]YYABORT
Return immediately with value 1 (to report failure).

If you use a reentrant parser, you can optionally pass additional parameter information
to it in a reentrant way. To do so, use the declaration %parse-param:

[Directive]%parse-param {argument-declaration}
Declare that an argument declared by the braced-code argument-declaration is an ad-
ditional yyparse argument. The argument-declaration is used when declaring func-
tions or prototypes. The last identifier in argument-declaration must be the argument
name.

Here’s an example. Write this in the parser:
%parse-param {int *nastiness}
%parse-param {int *randomness}

Then call the parser like this:
{
int nastiness, randomness;
... /* Store proper data in nastiness and randomness. */
value = yyparse (&nastiness, &randomness);
...

}

In the grammar actions, use expressions like this to refer to the data:
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exp: ... { ...; *randomness += 1; ... }

4.2 The Push Parser Function yypush_parse

(The current push parsing interface is experimental and may evolve. More user feedback
will help to stabilize it.)

You call the function yypush_parse to parse a single token. This function is available if
either the %define api.push_pull "push" or %define api.push_pull "both" declaration
is used. See Section 3.7.11 [A Push Parser], page 70.

[Function]int yypush_parse (yypstate *yyps)
The value returned by yypush_parse is the same as for yyparse with the following
exception. yypush_parse will return YYPUSH MORE if more input is required to
finish parsing the grammar.

4.3 The Pull Parser Function yypull_parse

(The current push parsing interface is experimental and may evolve. More user feedback
will help to stabilize it.)

You call the function yypull_parse to parse the rest of the input stream. This function
is available if the %define api.push_pull "both" declaration is used. See Section 3.7.11
[A Push Parser], page 70.

[Function]int yypull_parse (yypstate *yyps)
The value returned by yypull_parse is the same as for yyparse.

4.4 The Parser Create Function yystate_new

(The current push parsing interface is experimental and may evolve. More user feedback
will help to stabilize it.)

You call the function yypstate_new to create a new parser instance. This function is
available if either the %define api.push_pull "push" or %define api.push_pull "both"
declaration is used. See Section 3.7.11 [A Push Parser], page 70.

[Function]yypstate *yypstate_new (void)
The fuction will return a valid parser instance if there was memory available or 0 if
no memory was available. In impure mode, it will also return 0 if a parser instance
is currently allocated.

4.5 The Parser Delete Function yystate_delete

(The current push parsing interface is experimental and may evolve. More user feedback
will help to stabilize it.)

You call the function yypstate_delete to delete a parser instance. function is available if
either the %define api.push_pull "push" or %define api.push_pull "both" declaration
is used. See Section 3.7.11 [A Push Parser], page 70.

[Function]void yypstate_delete (yypstate *yyps)
This function will reclaim the memory associated with a parser instance. After this
call, you should no longer attempt to use the parser instance.
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4.6 The Lexical Analyzer Function yylex

The lexical analyzer function, yylex, recognizes tokens from the input stream and returns
them to the parser. Bison does not create this function automatically; you must write it so
that yyparse can call it. The function is sometimes referred to as a lexical scanner.

In simple programs, yylex is often defined at the end of the Bison grammar file. If
yylex is defined in a separate source file, you need to arrange for the token-type macro
definitions to be available there. To do this, use the ‘-d’ option when you run Bison, so
that it will write these macro definitions into a separate header file ‘name.tab.h’ which you
can include in the other source files that need it. See Chapter 9 [Invoking Bison], page 115.

4.6.1 Calling Convention for yylex

The value that yylex returns must be the positive numeric code for the type of token it
has just found; a zero or negative value signifies end-of-input.

When a token is referred to in the grammar rules by a name, that name in the parser
file becomes a C macro whose definition is the proper numeric code for that token type. So
yylex can use the name to indicate that type. See Section 3.2 [Symbols], page 52.

When a token is referred to in the grammar rules by a character literal, the numeric
code for that character is also the code for the token type. So yylex can simply return
that character code, possibly converted to unsigned char to avoid sign-extension. The null
character must not be used this way, because its code is zero and that signifies end-of-input.

Here is an example showing these things:
int
yylex (void)
{
...
if (c == EOF) /* Detect end-of-input. */
return 0;

...
if (c == ’+’ || c == ’-’)
return c; /* Assume token type for ‘+’ is ’+’. */

...
return INT; /* Return the type of the token. */
...

}

This interface has been designed so that the output from the lex utility can be used without
change as the definition of yylex.

If the grammar uses literal string tokens, there are two ways that yylex can determine
the token type codes for them:
• If the grammar defines symbolic token names as aliases for the literal string tokens,

yylex can use these symbolic names like all others. In this case, the use of the literal
string tokens in the grammar file has no effect on yylex.

• yylex can find the multicharacter token in the yytname table. The index of the token
in the table is the token type’s code. The name of a multicharacter token is recorded in
yytname with a double-quote, the token’s characters, and another double-quote. The
token’s characters are escaped as necessary to be suitable as input to Bison.
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Here’s code for looking up a multicharacter token in yytname, assuming that the char-
acters of the token are stored in token_buffer, and assuming that the token does not
contain any characters like ‘"’ that require escaping.

for (i = 0; i < YYNTOKENS; i++)

{

if (yytname[i] != 0

&& yytname[i][0] == ’"’

&& ! strncmp (yytname[i] + 1, token_buffer,

strlen (token_buffer))

&& yytname[i][strlen (token_buffer) + 1] == ’"’

&& yytname[i][strlen (token_buffer) + 2] == 0)

break;

}

The yytname table is generated only if you use the %token-table declaration. See
Section 3.7.12 [Decl Summary], page 72.

4.6.2 Semantic Values of Tokens

In an ordinary (nonreentrant) parser, the semantic value of the token must be stored into
the global variable yylval. When you are using just one data type for semantic values,
yylval has that type. Thus, if the type is int (the default), you might write this in yylex:

...
yylval = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */
...

When you are using multiple data types, yylval’s type is a union made from the %union
declaration (see Section 3.7.4 [The Collection of Value Types], page 66). So when you store
a token’s value, you must use the proper member of the union. If the %union declaration
looks like this:

%union {
int intval;
double val;
symrec *tptr;

}

then the code in yylex might look like this:
...
yylval.intval = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */
...

4.6.3 Textual Locations of Tokens

If you are using the ‘@n ’-feature (see Section 3.6 [Tracking Locations], page 61) in actions
to keep track of the textual locations of tokens and groupings, then you must provide this
information in yylex. The function yyparse expects to find the textual location of a token
just parsed in the global variable yylloc. So yylex must store the proper data in that
variable.

By default, the value of yylloc is a structure and you need only initialize the members
that are going to be used by the actions. The four members are called first_line, first_
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column, last_line and last_column. Note that the use of this feature makes the parser
noticeably slower.

The data type of yylloc has the name YYLTYPE.

4.6.4 Calling Conventions for Pure Parsers

When you use the Bison declaration %define api.pure to request a pure, reentrant parser,
the global communication variables yylval and yylloc cannot be used. (See Section 3.7.10
[A Pure (Reentrant) Parser], page 70.) In such parsers the two global variables are replaced
by pointers passed as arguments to yylex. You must declare them as shown here, and pass
the information back by storing it through those pointers.

int
yylex (YYSTYPE *lvalp, YYLTYPE *llocp)
{
...
*lvalp = value; /* Put value onto Bison stack. */
return INT; /* Return the type of the token. */
...

}

If the grammar file does not use the ‘@’ constructs to refer to textual locations, then the
type YYLTYPE will not be defined. In this case, omit the second argument; yylex will be
called with only one argument.

If you wish to pass the additional parameter data to yylex, use %lex-param just like
%parse-param (see Section 4.1 [Parser Function], page 79).

[Directive]lex-param {argument-declaration}
Declare that the braced-code argument-declaration is an additional yylex argument
declaration.

For instance:

%parse-param {int *nastiness}
%lex-param {int *nastiness}
%parse-param {int *randomness}

results in the following signature:

int yylex (int *nastiness);
int yyparse (int *nastiness, int *randomness);

If %define api.pure is added:

int yylex (YYSTYPE *lvalp, int *nastiness);
int yyparse (int *nastiness, int *randomness);

and finally, if both %define api.pure and %locations are used:

int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
int yyparse (int *nastiness, int *randomness);
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4.7 The Error Reporting Function yyerror

The Bison parser detects a syntax error or parse error whenever it reads a token which
cannot satisfy any syntax rule. An action in the grammar can also explicitly proclaim
an error, using the macro YYERROR (see Section 4.8 [Special Features for Use in Actions],
page 85).

The Bison parser expects to report the error by calling an error reporting function named
yyerror, which you must supply. It is called by yyparse whenever a syntax error is found,
and it receives one argument. For a syntax error, the string is normally "syntax error".

If you invoke the directive %error-verbose in the Bison declarations section (see Sec-
tion 3.1.3 [The Bison Declarations Section], page 52), then Bison provides a more verbose
and specific error message string instead of just plain "syntax error".

The parser can detect one other kind of error: memory exhaustion. This can happen
when the input contains constructions that are very deeply nested. It isn’t likely you will
encounter this, since the Bison parser normally extends its stack automatically up to a very
large limit. But if memory is exhausted, yyparse calls yyerror in the usual fashion, except
that the argument string is "memory exhausted".

In some cases diagnostics like "syntax error" are translated automatically from English
to some other language before they are passed to yyerror. See Section 4.9 [International-
ization], page 87.

The following definition suffices in simple programs:

void
yyerror (char const *s)
{
fprintf (stderr, "%s\n", s);

}

After yyerror returns to yyparse, the latter will attempt error recovery if you have
written suitable error recovery grammar rules (see Chapter 6 [Error Recovery], page 101).
If recovery is impossible, yyparse will immediately return 1.

Obviously, in location tracking pure parsers, yyerror should have an access to the
current location. This is indeed the case for the GLR parsers, but not for the Yacc parser,
for historical reasons. I.e., if ‘%locations %define api.pure’ is passed then the prototypes
for yyerror are:

void yyerror (char const *msg); /* Yacc parsers. */
void yyerror (YYLTYPE *locp, char const *msg); /* GLR parsers. */

If ‘%parse-param {int *nastiness}’ is used, then:

void yyerror (int *nastiness, char const *msg); /* Yacc parsers. */
void yyerror (int *nastiness, char const *msg); /* GLR parsers. */

Finally, GLR and Yacc parsers share the same yyerror calling convention for abso-
lutely pure parsers, i.e., when the calling convention of yylex and the calling convention of
%define api.pure are pure. I.e.:

/* Location tracking. */
%locations
/* Pure yylex. */



Chapter 4: Parser C-Language Interface 85

%define api.pure
%lex-param {int *nastiness}
/* Pure yyparse. */
%parse-param {int *nastiness}
%parse-param {int *randomness}

results in the following signatures for all the parser kinds:
int yylex (YYSTYPE *lvalp, YYLTYPE *llocp, int *nastiness);
int yyparse (int *nastiness, int *randomness);
void yyerror (YYLTYPE *locp,

int *nastiness, int *randomness,
char const *msg);

The prototypes are only indications of how the code produced by Bison uses yyerror.
Bison-generated code always ignores the returned value, so yyerror can return any type,
including void. Also, yyerror can be a variadic function; that is why the message is always
passed last.

Traditionally yyerror returns an int that is always ignored, but this is purely for
historical reasons, and void is preferable since it more accurately describes the return type
for yyerror.

The variable yynerrs contains the number of syntax errors reported so far. Normally this
variable is global; but if you request a pure parser (see Section 3.7.10 [A Pure (Reentrant)
Parser], page 70) then it is a local variable which only the actions can access.

4.8 Special Features for Use in Actions

Here is a table of Bison constructs, variables and macros that are useful in actions.

[Variable]$$
Acts like a variable that contains the semantic value for the grouping made by the
current rule. See Section 3.5.3 [Actions], page 57.

[Variable]$n
Acts like a variable that contains the semantic value for the nth component of the
current rule. See Section 3.5.3 [Actions], page 57.

[Variable]$<typealt>$
Like $$ but specifies alternative typealt in the union specified by the %union decla-
ration. See Section 3.5.4 [Data Types of Values in Actions], page 58.

[Variable]$<typealt>n
Like $n but specifies alternative typealt in the union specified by the %union decla-
ration. See Section 3.5.4 [Data Types of Values in Actions], page 58.

[Macro]YYABORT;
Return immediately from yyparse, indicating failure. See Section 4.1 [The Parser
Function yyparse], page 79.

[Macro]YYACCEPT;
Return immediately from yyparse, indicating success. See Section 4.1 [The Parser
Function yyparse], page 79.
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[Macro]YYBACKUP (token, value );
Unshift a token. This macro is allowed only for rules that reduce a single value, and
only when there is no lookahead token. It is also disallowed in GLR parsers. It installs
a lookahead token with token type token and semantic value value; then it discards
the value that was going to be reduced by this rule.
If the macro is used when it is not valid, such as when there is a lookahead token
already, then it reports a syntax error with a message ‘cannot back up’ and performs
ordinary error recovery.
In either case, the rest of the action is not executed.

[Macro]YYEMPTY
Value stored in yychar when there is no lookahead token.

[Macro]YYEOF
Value stored in yychar when the lookahead is the end of the input stream.

[Macro]YYERROR;
Cause an immediate syntax error. This statement initiates error recovery just as if
the parser itself had detected an error; however, it does not call yyerror, and does
not print any message. If you want to print an error message, call yyerror explicitly
before the ‘YYERROR;’ statement. See Chapter 6 [Error Recovery], page 101.

[Macro]YYRECOVERING
The expression YYRECOVERING () yields 1 when the parser is recovering from a syntax
error, and 0 otherwise. See Chapter 6 [Error Recovery], page 101.

[Variable]yychar
Variable containing either the lookahead token, or YYEOF when the lookahead is the
end of the input stream, or YYEMPTY when no lookahead has been performed so the
next token is not yet known. Do not modify yychar in a deferred semantic action (see
Section 1.5.3 [GLR Semantic Actions], page 25). See Section 5.1 [Lookahead Tokens],
page 89.

[Macro]yyclearin;
Discard the current lookahead token. This is useful primarily in error rules. Do not
invoke yyclearin in a deferred semantic action (see Section 1.5.3 [GLR Semantic
Actions], page 25). See Chapter 6 [Error Recovery], page 101.

[Macro]yyerrok;
Resume generating error messages immediately for subsequent syntax errors. This is
useful primarily in error rules. See Chapter 6 [Error Recovery], page 101.

[Variable]yylloc
Variable containing the lookahead token location when yychar is not set to YYEMPTY
or YYEOF. Do not modify yylloc in a deferred semantic action (see Section 1.5.3 [GLR
Semantic Actions], page 25). See Section 3.6.2 [Actions and Locations], page 62.

[Variable]yylval
Variable containing the lookahead token semantic value when yychar is not set to
YYEMPTY or YYEOF. Do not modify yylval in a deferred semantic action (see Sec-
tion 1.5.3 [GLR Semantic Actions], page 25). See Section 3.5.3 [Actions], page 57.
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[Value]@$
Acts like a structure variable containing information on the textual location of the
grouping made by the current rule. See Section 3.6 [Tracking Locations], page 61.

[Value]@n
Acts like a structure variable containing information on the textual location of the
nth component of the current rule. See Section 3.6 [Tracking Locations], page 61.

4.9 Parser Internationalization

A Bison-generated parser can print diagnostics, including error and tracing messages. By
default, they appear in English. However, Bison also supports outputting diagnostics in
the user’s native language. To make this work, the user should set the usual environment
variables. See section “The User’s View” in GNU gettext utilities. For example, the
shell command ‘export LC_ALL=fr_CA.UTF-8’ might set the user’s locale to French Cana-
dian using the UTF-8 encoding. The exact set of available locales depends on the user’s
installation.

The maintainer of a package that uses a Bison-generated parser enables the internation-
alization of the parser’s output through the following steps. Here we assume a package that
uses GNU Autoconf and GNU Automake.
1. Into the directory containing the GNU Autoconf macros used by the package—

often called ‘m4’—copy the ‘bison-i18n.m4’ file installed by Bison under
‘share/aclocal/bison-i18n.m4’ in Bison’s installation directory. For example:

cp /usr/local/share/aclocal/bison-i18n.m4 m4/bison-i18n.m4

2. In the top-level ‘configure.ac’, after the AM_GNU_GETTEXT invocation, add an invo-
cation of BISON_I18N. This macro is defined in the file ‘bison-i18n.m4’ that you
copied earlier. It causes ‘configure’ to find the value of the BISON_LOCALEDIR vari-
able, and it defines the source-language symbol YYENABLE_NLS to enable translations
in the Bison-generated parser.

3. In the main function of your program, designate the directory containing Bison’s
runtime message catalog, through a call to ‘bindtextdomain’ with domain name
‘bison-runtime’. For example:

bindtextdomain ("bison-runtime", BISON_LOCALEDIR);

Typically this appears after any other call bindtextdomain (PACKAGE, LOCALEDIR)
that your package already has. Here we rely on ‘BISON_LOCALEDIR’ to be defined as a
string through the ‘Makefile’.

4. In the ‘Makefile.am’ that controls the compilation of the main function, make
‘BISON_LOCALEDIR’ available as a C preprocessor macro, either in ‘DEFS’ or in
‘AM_CPPFLAGS’. For example:

DEFS = @DEFS@ -DBISON_LOCALEDIR=’"$(BISON_LOCALEDIR)"’

or:
AM_CPPFLAGS = -DBISON_LOCALEDIR=’"$(BISON_LOCALEDIR)"’

5. Finally, invoke the command autoreconf to generate the build infrastructure.
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5 The Bison Parser Algorithm

As Bison reads tokens, it pushes them onto a stack along with their semantic values. The
stack is called the parser stack. Pushing a token is traditionally called shifting.

For example, suppose the infix calculator has read ‘1 + 5 *’, with a ‘3’ to come. The
stack will have four elements, one for each token that was shifted.

But the stack does not always have an element for each token read. When the last
n tokens and groupings shifted match the components of a grammar rule, they can be
combined according to that rule. This is called reduction. Those tokens and groupings are
replaced on the stack by a single grouping whose symbol is the result (left hand side) of
that rule. Running the rule’s action is part of the process of reduction, because this is what
computes the semantic value of the resulting grouping.

For example, if the infix calculator’s parser stack contains this:
1 + 5 * 3

and the next input token is a newline character, then the last three elements can be reduced
to 15 via the rule:

expr: expr ’*’ expr;

Then the stack contains just these three elements:
1 + 15

At this point, another reduction can be made, resulting in the single value 16. Then the
newline token can be shifted.

The parser tries, by shifts and reductions, to reduce the entire input down to a single
grouping whose symbol is the grammar’s start-symbol (see Section 1.1 [Languages and
Context-Free Grammars], page 17).

This kind of parser is known in the literature as a bottom-up parser.

5.1 Lookahead Tokens

The Bison parser does not always reduce immediately as soon as the last n tokens and
groupings match a rule. This is because such a simple strategy is inadequate to handle
most languages. Instead, when a reduction is possible, the parser sometimes “looks ahead”
at the next token in order to decide what to do.

When a token is read, it is not immediately shifted; first it becomes the lookahead token,
which is not on the stack. Now the parser can perform one or more reductions of tokens
and groupings on the stack, while the lookahead token remains off to the side. When no
more reductions should take place, the lookahead token is shifted onto the stack. This does
not mean that all possible reductions have been done; depending on the token type of the
lookahead token, some rules may choose to delay their application.

Here is a simple case where lookahead is needed. These three rules define expressions
which contain binary addition operators and postfix unary factorial operators (‘!’), and
allow parentheses for grouping.

expr: term ’+’ expr
| term
;
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term: ’(’ expr ’)’
| term ’!’
| NUMBER
;

Suppose that the tokens ‘1 + 2’ have been read and shifted; what should be done? If
the following token is ‘)’, then the first three tokens must be reduced to form an expr.
This is the only valid course, because shifting the ‘)’ would produce a sequence of symbols
term ’)’, and no rule allows this.

If the following token is ‘!’, then it must be shifted immediately so that ‘2 !’ can be
reduced to make a term. If instead the parser were to reduce before shifting, ‘1 + 2’ would
become an expr. It would then be impossible to shift the ‘!’ because doing so would produce
on the stack the sequence of symbols expr ’!’. No rule allows that sequence.

The lookahead token is stored in the variable yychar. Its semantic value and location,
if any, are stored in the variables yylval and yylloc. See Section 4.8 [Special Features for
Use in Actions], page 85.

5.2 Shift/Reduce Conflicts

Suppose we are parsing a language which has if-then and if-then-else statements, with a
pair of rules like this:

if_stmt:
IF expr THEN stmt

| IF expr THEN stmt ELSE stmt
;

Here we assume that IF, THEN and ELSE are terminal symbols for specific keyword tokens.

When the ELSE token is read and becomes the lookahead token, the contents of the stack
(assuming the input is valid) are just right for reduction by the first rule. But it is also
legitimate to shift the ELSE, because that would lead to eventual reduction by the second
rule.

This situation, where either a shift or a reduction would be valid, is called a shift/reduce
conflict. Bison is designed to resolve these conflicts by choosing to shift, unless otherwise
directed by operator precedence declarations. To see the reason for this, let’s contrast it
with the other alternative.

Since the parser prefers to shift the ELSE, the result is to attach the else-clause to the
innermost if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;

if x then do; if y then win (); else lose; end;

But if the parser chose to reduce when possible rather than shift, the result would be to
attach the else-clause to the outermost if-statement, making these two inputs equivalent:

if x then if y then win (); else lose;

if x then do; if y then win (); end; else lose;
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The conflict exists because the grammar as written is ambiguous: either parsing of the
simple nested if-statement is legitimate. The established convention is that these ambiguities
are resolved by attaching the else-clause to the innermost if-statement; this is what Bison
accomplishes by choosing to shift rather than reduce. (It would ideally be cleaner to write an
unambiguous grammar, but that is very hard to do in this case.) This particular ambiguity
was first encountered in the specifications of Algol 60 and is called the “dangling else”
ambiguity.

To avoid warnings from Bison about predictable, legitimate shift/reduce conflicts, use
the %expect n declaration. There will be no warning as long as the number of shift/reduce
conflicts is exactly n. See Section 3.7.8 [Suppressing Conflict Warnings], page 69.

The definition of if_stmt above is solely to blame for the conflict, but the conflict
does not actually appear without additional rules. Here is a complete Bison input file that
actually manifests the conflict:

%token IF THEN ELSE variable
%%
stmt: expr

| if_stmt
;

if_stmt:
IF expr THEN stmt

| IF expr THEN stmt ELSE stmt
;

expr: variable
;

5.3 Operator Precedence

Another situation where shift/reduce conflicts appear is in arithmetic expressions. Here
shifting is not always the preferred resolution; the Bison declarations for operator precedence
allow you to specify when to shift and when to reduce.

5.3.1 When Precedence is Needed

Consider the following ambiguous grammar fragment (ambiguous because the input
‘1 - 2 * 3’ can be parsed in two different ways):

expr: expr ’-’ expr
| expr ’*’ expr
| expr ’<’ expr
| ’(’ expr ’)’
...
;

Suppose the parser has seen the tokens ‘1’, ‘-’ and ‘2’; should it reduce them via the rule
for the subtraction operator? It depends on the next token. Of course, if the next token is
‘)’, we must reduce; shifting is invalid because no single rule can reduce the token sequence
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‘- 2 )’ or anything starting with that. But if the next token is ‘*’ or ‘<’, we have a choice:
either shifting or reduction would allow the parse to complete, but with different results.

To decide which one Bison should do, we must consider the results. If the next operator
token op is shifted, then it must be reduced first in order to permit another opportunity
to reduce the difference. The result is (in effect) ‘1 - (2 op 3)’. On the other hand, if the
subtraction is reduced before shifting op, the result is ‘(1 - 2) op 3’. Clearly, then, the
choice of shift or reduce should depend on the relative precedence of the operators ‘-’ and
op: ‘*’ should be shifted first, but not ‘<’.

What about input such as ‘1 - 2 - 5’; should this be ‘(1 - 2) - 5’ or should it be
‘1 - (2 - 5)’? For most operators we prefer the former, which is called left association.
The latter alternative, right association, is desirable for assignment operators. The choice
of left or right association is a matter of whether the parser chooses to shift or reduce when
the stack contains ‘1 - 2’ and the lookahead token is ‘-’: shifting makes right-associativity.

5.3.2 Specifying Operator Precedence

Bison allows you to specify these choices with the operator precedence declarations %left
and %right. Each such declaration contains a list of tokens, which are operators whose
precedence and associativity is being declared. The %left declaration makes all those
operators left-associative and the %right declaration makes them right-associative. A third
alternative is %nonassoc, which declares that it is a syntax error to find the same operator
twice “in a row”.

The relative precedence of different operators is controlled by the order in which they
are declared. The first %left or %right declaration in the file declares the operators whose
precedence is lowest, the next such declaration declares the operators whose precedence is
a little higher, and so on.

5.3.3 Precedence Examples

In our example, we would want the following declarations:

%left ’<’
%left ’-’
%left ’*’

In a more complete example, which supports other operators as well, we would declare
them in groups of equal precedence. For example, ’+’ is declared with ’-’:

%left ’<’ ’>’ ’=’ NE LE GE
%left ’+’ ’-’
%left ’*’ ’/’

(Here NE and so on stand for the operators for “not equal” and so on. We assume that
these tokens are more than one character long and therefore are represented by names, not
character literals.)

5.3.4 How Precedence Works

The first effect of the precedence declarations is to assign precedence levels to the terminal
symbols declared. The second effect is to assign precedence levels to certain rules: each
rule gets its precedence from the last terminal symbol mentioned in the components. (You
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can also specify explicitly the precedence of a rule. See Section 5.4 [Context-Dependent
Precedence], page 93.)

Finally, the resolution of conflicts works by comparing the precedence of the rule being
considered with that of the lookahead token. If the token’s precedence is higher, the choice
is to shift. If the rule’s precedence is higher, the choice is to reduce. If they have equal
precedence, the choice is made based on the associativity of that precedence level. The
verbose output file made by ‘-v’ (see Chapter 9 [Invoking Bison], page 115) says how each
conflict was resolved.

Not all rules and not all tokens have precedence. If either the rule or the lookahead
token has no precedence, then the default is to shift.

5.4 Context-Dependent Precedence

Often the precedence of an operator depends on the context. This sounds outlandish at first,
but it is really very common. For example, a minus sign typically has a very high precedence
as a unary operator, and a somewhat lower precedence (lower than multiplication) as a
binary operator.

The Bison precedence declarations, %left, %right and %nonassoc, can only be used once
for a given token; so a token has only one precedence declared in this way. For context-
dependent precedence, you need to use an additional mechanism: the %prec modifier for
rules.

The %prec modifier declares the precedence of a particular rule by specifying a terminal
symbol whose precedence should be used for that rule. It’s not necessary for that symbol
to appear otherwise in the rule. The modifier’s syntax is:

%prec terminal-symbol

and it is written after the components of the rule. Its effect is to assign the rule the
precedence of terminal-symbol, overriding the precedence that would be deduced for it in
the ordinary way. The altered rule precedence then affects how conflicts involving that rule
are resolved (see Section 5.3 [Operator Precedence], page 91).

Here is how %prec solves the problem of unary minus. First, declare a precedence for a
fictitious terminal symbol named UMINUS. There are no tokens of this type, but the symbol
serves to stand for its precedence:

...
%left ’+’ ’-’
%left ’*’
%left UMINUS

Now the precedence of UMINUS can be used in specific rules:
exp: ...

| exp ’-’ exp
...
| ’-’ exp %prec UMINUS

5.5 Parser States

The function yyparse is implemented using a finite-state machine. The values pushed
on the parser stack are not simply token type codes; they represent the entire sequence of
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terminal and nonterminal symbols at or near the top of the stack. The current state collects
all the information about previous input which is relevant to deciding what to do next.

Each time a lookahead token is read, the current parser state together with the type of
lookahead token are looked up in a table. This table entry can say, “Shift the lookahead
token.” In this case, it also specifies the new parser state, which is pushed onto the top
of the parser stack. Or it can say, “Reduce using rule number n.” This means that a
certain number of tokens or groupings are taken off the top of the stack, and replaced by
one grouping. In other words, that number of states are popped from the stack, and one
new state is pushed.

There is one other alternative: the table can say that the lookahead token is erroneous
in the current state. This causes error processing to begin (see Chapter 6 [Error Recovery],
page 101).

5.6 Reduce/Reduce Conflicts

A reduce/reduce conflict occurs if there are two or more rules that apply to the same
sequence of input. This usually indicates a serious error in the grammar.

For example, here is an erroneous attempt to define a sequence of zero or more word
groupings.

sequence: /* empty */
{ printf ("empty sequence\n"); }

| maybeword
| sequence word

{ printf ("added word %s\n", $2); }
;

maybeword: /* empty */
{ printf ("empty maybeword\n"); }

| word
{ printf ("single word %s\n", $1); }

;

The error is an ambiguity: there is more than one way to parse a single word into a
sequence. It could be reduced to a maybeword and then into a sequence via the second
rule. Alternatively, nothing-at-all could be reduced into a sequence via the first rule, and
this could be combined with the word using the third rule for sequence.

There is also more than one way to reduce nothing-at-all into a sequence. This can be
done directly via the first rule, or indirectly via maybeword and then the second rule.

You might think that this is a distinction without a difference, because it does not change
whether any particular input is valid or not. But it does affect which actions are run. One
parsing order runs the second rule’s action; the other runs the first rule’s action and the
third rule’s action. In this example, the output of the program changes.

Bison resolves a reduce/reduce conflict by choosing to use the rule that appears first in
the grammar, but it is very risky to rely on this. Every reduce/reduce conflict must be
studied and usually eliminated. Here is the proper way to define sequence:

sequence: /* empty */
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{ printf ("empty sequence\n"); }
| sequence word

{ printf ("added word %s\n", $2); }
;

Here is another common error that yields a reduce/reduce conflict:
sequence: /* empty */

| sequence words
| sequence redirects
;

words: /* empty */
| words word
;

redirects:/* empty */
| redirects redirect
;

The intention here is to define a sequence which can contain either word or redirect
groupings. The individual definitions of sequence, words and redirects are error-free,
but the three together make a subtle ambiguity: even an empty input can be parsed in
infinitely many ways!

Consider: nothing-at-all could be a words. Or it could be two words in a row, or three,
or any number. It could equally well be a redirects, or two, or any number. Or it could
be a words followed by three redirects and another words. And so on.

Here are two ways to correct these rules. First, to make it a single level of sequence:
sequence: /* empty */

| sequence word
| sequence redirect
;

Second, to prevent either a words or a redirects from being empty:
sequence: /* empty */

| sequence words
| sequence redirects
;

words: word
| words word
;

redirects:redirect
| redirects redirect
;

5.7 Mysterious Reduce/Reduce Conflicts

Sometimes reduce/reduce conflicts can occur that don’t look warranted. Here is an example:
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%token ID

%%
def: param_spec return_spec ’,’

;
param_spec:

type
| name_list ’:’ type
;

return_spec:
type

| name ’:’ type
;

type: ID
;

name: ID
;

name_list:
name

| name ’,’ name_list
;

It would seem that this grammar can be parsed with only a single token of lookahead:
when a param_spec is being read, an ID is a name if a comma or colon follows, or a type if
another ID follows. In other words, this grammar is LR(1).

However, Bison, like most parser generators, cannot actually handle all LR(1) grammars.
In this grammar, two contexts, that after an ID at the beginning of a param_spec and
likewise at the beginning of a return_spec, are similar enough that Bison assumes they
are the same. They appear similar because the same set of rules would be active—the
rule for reducing to a name and that for reducing to a type. Bison is unable to determine
at that stage of processing that the rules would require different lookahead tokens in the
two contexts, so it makes a single parser state for them both. Combining the two contexts
causes a conflict later. In parser terminology, this occurrence means that the grammar is
not LALR(1).

In general, it is better to fix deficiencies than to document them. But this particular
deficiency is intrinsically hard to fix; parser generators that can handle LR(1) grammars are
hard to write and tend to produce parsers that are very large. In practice, Bison is more
useful as it is now.

When the problem arises, you can often fix it by identifying the two parser states that are
being confused, and adding something to make them look distinct. In the above example,
adding one rule to return_spec as follows makes the problem go away:
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%token BOGUS
...
%%
...
return_spec:

type
| name ’:’ type
/* This rule is never used. */
| ID BOGUS
;

This corrects the problem because it introduces the possibility of an additional active
rule in the context after the ID at the beginning of return_spec. This rule is not active
in the corresponding context in a param_spec, so the two contexts receive distinct parser
states. As long as the token BOGUS is never generated by yylex, the added rule cannot alter
the way actual input is parsed.

In this particular example, there is another way to solve the problem: rewrite the rule
for return_spec to use ID directly instead of via name. This also causes the two confusing
contexts to have different sets of active rules, because the one for return_spec activates
the altered rule for return_spec rather than the one for name.

param_spec:
type

| name_list ’:’ type
;

return_spec:
type

| ID ’:’ type
;

For a more detailed exposition of LALR(1) parsers and parser generators, please see:
Frank DeRemer and Thomas Pennello, Efficient Computation of LALR(1) Look-Ahead Sets,
ACM Transactions on Programming Languages and Systems, Vol. 4, No. 4 (October 1982),
pp. 615–649 http://doi.acm.org/10.1145/69622.357187.

5.8 Generalized LR (GLR) Parsing

Bison produces deterministic parsers that choose uniquely when to reduce and which re-
duction to apply based on a summary of the preceding input and on one extra token of
lookahead. As a result, normal Bison handles a proper subset of the family of context-free
languages. Ambiguous grammars, since they have strings with more than one possible se-
quence of reductions cannot have deterministic parsers in this sense. The same is true of
languages that require more than one symbol of lookahead, since the parser lacks the infor-
mation necessary to make a decision at the point it must be made in a shift-reduce parser.
Finally, as previously mentioned (see Section 5.7 [Mystery Conflicts], page 95), there are
languages where Bison’s particular choice of how to summarize the input seen so far loses
necessary information.

When you use the ‘%glr-parser’ declaration in your grammar file, Bison generates
a parser that uses a different algorithm, called Generalized LR (or GLR). A Bison GLR

http://doi.acm.org/10.1145/69622.357187
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parser uses the same basic algorithm for parsing as an ordinary Bison parser, but behaves
differently in cases where there is a shift-reduce conflict that has not been resolved by
precedence rules (see Section 5.3 [Precedence], page 91) or a reduce-reduce conflict. When
a GLR parser encounters such a situation, it effectively splits into a several parsers, one for
each possible shift or reduction. These parsers then proceed as usual, consuming tokens
in lock-step. Some of the stacks may encounter other conflicts and split further, with the
result that instead of a sequence of states, a Bison GLR parsing stack is what is in effect a
tree of states.

In effect, each stack represents a guess as to what the proper parse is. Additional
input may indicate that a guess was wrong, in which case the appropriate stack silently
disappears. Otherwise, the semantics actions generated in each stack are saved, rather than
being executed immediately. When a stack disappears, its saved semantic actions never get
executed. When a reduction causes two stacks to become equivalent, their sets of semantic
actions are both saved with the state that results from the reduction. We say that two
stacks are equivalent when they both represent the same sequence of states, and each pair
of corresponding states represents a grammar symbol that produces the same segment of
the input token stream.

Whenever the parser makes a transition from having multiple states to having one, it
reverts to the normal LALR(1) parsing algorithm, after resolving and executing the saved-up
actions. At this transition, some of the states on the stack will have semantic values that
are sets (actually multisets) of possible actions. The parser tries to pick one of the actions
by first finding one whose rule has the highest dynamic precedence, as set by the ‘%dprec’
declaration. Otherwise, if the alternative actions are not ordered by precedence, but there
the same merging function is declared for both rules by the ‘%merge’ declaration, Bison
resolves and evaluates both and then calls the merge function on the result. Otherwise, it
reports an ambiguity.

It is possible to use a data structure for the GLR parsing tree that permits the processing
of any LALR(1) grammar in linear time (in the size of the input), any unambiguous (not
necessarily LALR(1)) grammar in quadratic worst-case time, and any general (possibly am-
biguous) context-free grammar in cubic worst-case time. However, Bison currently uses a
simpler data structure that requires time proportional to the length of the input times the
maximum number of stacks required for any prefix of the input. Thus, really ambiguous
or nondeterministic grammars can require exponential time and space to process. Such
badly behaving examples, however, are not generally of practical interest. Usually, nonde-
terminism in a grammar is local—the parser is “in doubt” only for a few tokens at a time.
Therefore, the current data structure should generally be adequate. On LALR(1) portions
of a grammar, in particular, it is only slightly slower than with the default Bison parser.

For a more detailed exposition of GLR parsers, please see: Elizabeth Scott,
Adrian Johnstone and Shamsa Sadaf Hussain, Tomita-Style Generalised LR Parsers,
Royal Holloway, University of London, Department of Computer Science, TR-00-12,
http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps,
(2000-12-24).

http://www.cs.rhul.ac.uk/research/languages/publications/tomita_style_1.ps
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5.9 Memory Management, and How to Avoid Memory
Exhaustion

The Bison parser stack can run out of memory if too many tokens are shifted and not
reduced. When this happens, the parser function yyparse calls yyerror and then returns
2.

Because Bison parsers have growing stacks, hitting the upper limit usually results from
using a right recursion instead of a left recursion, See Section 3.4 [Recursive Rules], page 55.

By defining the macro YYMAXDEPTH, you can control how deep the parser stack can
become before memory is exhausted. Define the macro with a value that is an integer.
This value is the maximum number of tokens that can be shifted (and not reduced) before
overflow.

The stack space allowed is not necessarily allocated. If you specify a large value for
YYMAXDEPTH, the parser normally allocates a small stack at first, and then makes it bigger by
stages as needed. This increasing allocation happens automatically and silently. Therefore,
you do not need to make YYMAXDEPTH painfully small merely to save space for ordinary
inputs that do not need much stack.

However, do not allow YYMAXDEPTH to be a value so large that arithmetic overflow could
occur when calculating the size of the stack space. Also, do not allow YYMAXDEPTH to be
less than YYINITDEPTH.

The default value of YYMAXDEPTH, if you do not define it, is 10000.
You can control how much stack is allocated initially by defining the macro YYINITDEPTH

to a positive integer. For the C LALR(1) parser, this value must be a compile-time constant
unless you are assuming C99 or some other target language or compiler that allows variable-
length arrays. The default is 200.

Do not allow YYINITDEPTH to be greater than YYMAXDEPTH.
Because of semantical differences between C and C++, the LALR(1) parsers in C produced

by Bison cannot grow when compiled by C++ compilers. In this precise case (compiling a
C parser as C++) you are suggested to grow YYINITDEPTH. The Bison maintainers hope to
fix this deficiency in a future release.



100 Bison 2.4.1



Chapter 6: Error Recovery 101

6 Error Recovery

It is not usually acceptable to have a program terminate on a syntax error. For example, a
compiler should recover sufficiently to parse the rest of the input file and check it for errors;
a calculator should accept another expression.

In a simple interactive command parser where each input is one line, it may be sufficient
to allow yyparse to return 1 on error and have the caller ignore the rest of the input line
when that happens (and then call yyparse again). But this is inadequate for a compiler,
because it forgets all the syntactic context leading up to the error. A syntax error deep
within a function in the compiler input should not cause the compiler to treat the following
line like the beginning of a source file.

You can define how to recover from a syntax error by writing rules to recognize the
special token error. This is a terminal symbol that is always defined (you need not declare
it) and reserved for error handling. The Bison parser generates an error token whenever
a syntax error happens; if you have provided a rule to recognize this token in the current
context, the parse can continue.

For example:
stmnts: /* empty string */

| stmnts ’\n’
| stmnts exp ’\n’
| stmnts error ’\n’

The fourth rule in this example says that an error followed by a newline makes a valid
addition to any stmnts.

What happens if a syntax error occurs in the middle of an exp? The error recovery rule,
interpreted strictly, applies to the precise sequence of a stmnts, an error and a newline. If
an error occurs in the middle of an exp, there will probably be some additional tokens and
subexpressions on the stack after the last stmnts, and there will be tokens to read before
the next newline. So the rule is not applicable in the ordinary way.

But Bison can force the situation to fit the rule, by discarding part of the semantic
context and part of the input. First it discards states and objects from the stack until
it gets back to a state in which the error token is acceptable. (This means that the
subexpressions already parsed are discarded, back to the last complete stmnts.) At this
point the error token can be shifted. Then, if the old lookahead token is not acceptable
to be shifted next, the parser reads tokens and discards them until it finds a token which
is acceptable. In this example, Bison reads and discards input until the next newline so
that the fourth rule can apply. Note that discarded symbols are possible sources of memory
leaks, see Section 3.7.7 [Freeing Discarded Symbols], page 67, for a means to reclaim this
memory.

The choice of error rules in the grammar is a choice of strategies for error recovery. A
simple and useful strategy is simply to skip the rest of the current input line or current
statement if an error is detected:

stmnt: error ’;’ /* On error, skip until ’;’ is read. */

It is also useful to recover to the matching close-delimiter of an opening-delimiter that has
already been parsed. Otherwise the close-delimiter will probably appear to be unmatched,
and generate another, spurious error message:
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primary: ’(’ expr ’)’
| ’(’ error ’)’
...
;

Error recovery strategies are necessarily guesses. When they guess wrong, one syntax
error often leads to another. In the above example, the error recovery rule guesses that an
error is due to bad input within one stmnt. Suppose that instead a spurious semicolon is
inserted in the middle of a valid stmnt. After the error recovery rule recovers from the first
error, another syntax error will be found straightaway, since the text following the spurious
semicolon is also an invalid stmnt.

To prevent an outpouring of error messages, the parser will output no error message for
another syntax error that happens shortly after the first; only after three consecutive input
tokens have been successfully shifted will error messages resume.

Note that rules which accept the error token may have actions, just as any other rules
can.

You can make error messages resume immediately by using the macro yyerrok in an
action. If you do this in the error rule’s action, no error messages will be suppressed. This
macro requires no arguments; ‘yyerrok;’ is a valid C statement.

The previous lookahead token is reanalyzed immediately after an error. If this is unac-
ceptable, then the macro yyclearin may be used to clear this token. Write the statement
‘yyclearin;’ in the error rule’s action. See Section 4.8 [Special Features for Use in Actions],
page 85.

For example, suppose that on a syntax error, an error handling routine is called that
advances the input stream to some point where parsing should once again commence. The
next symbol returned by the lexical scanner is probably correct. The previous lookahead
token ought to be discarded with ‘yyclearin;’.

The expression YYRECOVERING () yields 1 when the parser is recovering from a syntax
error, and 0 otherwise. Syntax error diagnostics are suppressed while recovering from a
syntax error.
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7 Handling Context Dependencies

The Bison paradigm is to parse tokens first, then group them into larger syntactic units. In
many languages, the meaning of a token is affected by its context. Although this violates
the Bison paradigm, certain techniques (known as kludges) may enable you to write Bison
parsers for such languages.

(Actually, “kludge” means any technique that gets its job done but is neither clean nor
robust.)

7.1 Semantic Info in Token Types

The C language has a context dependency: the way an identifier is used depends on what
its current meaning is. For example, consider this:

foo (x);

This looks like a function call statement, but if foo is a typedef name, then this is
actually a declaration of x. How can a Bison parser for C decide how to parse this input?

The method used in GNU C is to have two different token types, IDENTIFIER and
TYPENAME. When yylex finds an identifier, it looks up the current declaration of the iden-
tifier in order to decide which token type to return: TYPENAME if the identifier is declared
as a typedef, IDENTIFIER otherwise.

The grammar rules can then express the context dependency by the choice of token type
to recognize. IDENTIFIER is accepted as an expression, but TYPENAME is not. TYPENAME can
start a declaration, but IDENTIFIER cannot. In contexts where the meaning of the identifier
is not significant, such as in declarations that can shadow a typedef name, either TYPENAME
or IDENTIFIER is accepted—there is one rule for each of the two token types.

This technique is simple to use if the decision of which kinds of identifiers to allow is
made at a place close to where the identifier is parsed. But in C this is not always so: C
allows a declaration to redeclare a typedef name provided an explicit type has been specified
earlier:

typedef int foo, bar;
int baz (void)
{
static bar (bar); /* redeclare bar as static variable */
extern foo foo (foo); /* redeclare foo as function */
return foo (bar);

}

Unfortunately, the name being declared is separated from the declaration construct itself
by a complicated syntactic structure—the “declarator”.

As a result, part of the Bison parser for C needs to be duplicated, with all the nonterminal
names changed: once for parsing a declaration in which a typedef name can be redefined,
and once for parsing a declaration in which that can’t be done. Here is a part of the
duplication, with actions omitted for brevity:

initdcl:
declarator maybeasm ’=’
init
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| declarator maybeasm
;

notype_initdcl:
notype_declarator maybeasm ’=’
init

| notype_declarator maybeasm
;

Here initdcl can redeclare a typedef name, but notype_initdcl cannot. The distinction
between declarator and notype_declarator is the same sort of thing.

There is some similarity between this technique and a lexical tie-in (described next), in
that information which alters the lexical analysis is changed during parsing by other parts of
the program. The difference is here the information is global, and is used for other purposes
in the program. A true lexical tie-in has a special-purpose flag controlled by the syntactic
context.

7.2 Lexical Tie-ins

One way to handle context-dependency is the lexical tie-in: a flag which is set by Bison
actions, whose purpose is to alter the way tokens are parsed.

For example, suppose we have a language vaguely like C, but with a special construct
‘hex (hex-expr)’. After the keyword hex comes an expression in parentheses in which all
integers are hexadecimal. In particular, the token ‘a1b’ must be treated as an integer rather
than as an identifier if it appears in that context. Here is how you can do it:

%{
int hexflag;
int yylex (void);
void yyerror (char const *);

%}
%%
...
expr: IDENTIFIER

| constant
| HEX ’(’

{ hexflag = 1; }
expr ’)’

{ hexflag = 0;
$$ = $4; }

| expr ’+’ expr
{ $$ = make_sum ($1, $3); }

...
;

constant:
INTEGER

| STRING
;
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Here we assume that yylex looks at the value of hexflag; when it is nonzero, all integers
are parsed in hexadecimal, and tokens starting with letters are parsed as integers if possible.

The declaration of hexflag shown in the prologue of the parser file is needed to make it
accessible to the actions (see Section 3.1.1 [The Prologue], page 47). You must also write
the code in yylex to obey the flag.

7.3 Lexical Tie-ins and Error Recovery

Lexical tie-ins make strict demands on any error recovery rules you have. See Chapter 6
[Error Recovery], page 101.

The reason for this is that the purpose of an error recovery rule is to abort the parsing
of one construct and resume in some larger construct. For example, in C-like languages, a
typical error recovery rule is to skip tokens until the next semicolon, and then start a new
statement, like this:

stmt: expr ’;’
| IF ’(’ expr ’)’ stmt { ... }
...
error ’;’

{ hexflag = 0; }
;

If there is a syntax error in the middle of a ‘hex (expr)’ construct, this error rule will
apply, and then the action for the completed ‘hex (expr)’ will never run. So hexflag
would remain set for the entire rest of the input, or until the next hex keyword, causing
identifiers to be misinterpreted as integers.

To avoid this problem the error recovery rule itself clears hexflag.
There may also be an error recovery rule that works within expressions. For example,

there could be a rule which applies within parentheses and skips to the close-parenthesis:
expr: ...

| ’(’ expr ’)’
{ $$ = $2; }

| ’(’ error ’)’
...

If this rule acts within the hex construct, it is not going to abort that construct (since
it applies to an inner level of parentheses within the construct). Therefore, it should not
clear the flag: the rest of the hex construct should be parsed with the flag still in effect.

What if there is an error recovery rule which might abort out of the hex construct or
might not, depending on circumstances? There is no way you can write the action to
determine whether a hex construct is being aborted or not. So if you are using a lexical
tie-in, you had better make sure your error recovery rules are not of this kind. Each rule
must be such that you can be sure that it always will, or always won’t, have to clear the
flag.
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8 Debugging Your Parser

Developing a parser can be a challenge, especially if you don’t understand the algorithm (see
Chapter 5 [The Bison Parser Algorithm], page 89). Even so, sometimes a detailed descrip-
tion of the automaton can help (see Section 8.1 [Understanding Your Parser], page 107), or
tracing the execution of the parser can give some insight on why it behaves improperly (see
Section 8.2 [Tracing Your Parser], page 113).

8.1 Understanding Your Parser

As documented elsewhere (see Chapter 5 [The Bison Parser Algorithm], page 89) Bison
parsers are shift/reduce automata. In some cases (much more frequent than one would
hope), looking at this automaton is required to tune or simply fix a parser. Bison provides
two different representation of it, either textually or graphically (as a DOT file).

The textual file is generated when the options ‘--report’ or ‘--verbose’ are specified,
see See Chapter 9 [Invoking Bison], page 115. Its name is made by removing ‘.tab.c’ or
‘.c’ from the parser output file name, and adding ‘.output’ instead. Therefore, if the input
file is ‘foo.y’, then the parser file is called ‘foo.tab.c’ by default. As a consequence, the
verbose output file is called ‘foo.output’.

The following grammar file, ‘calc.y’, will be used in the sequel:

%token NUM STR
%left ’+’ ’-’
%left ’*’
%%
exp: exp ’+’ exp

| exp ’-’ exp
| exp ’*’ exp
| exp ’/’ exp
| NUM
;

useless: STR;
%%

bison reports:

calc.y: warning: 1 nonterminal and 1 rule useless in grammar
calc.y:11.1-7: warning: nonterminal useless in grammar: useless
calc.y:11.10-12: warning: rule useless in grammar: useless: STR
calc.y: conflicts: 7 shift/reduce

When given ‘--report=state’, in addition to ‘calc.tab.c’, it creates a file
‘calc.output’ with contents detailed below. The order of the output and the exact
presentation might vary, but the interpretation is the same.

The first section includes details on conflicts that were solved thanks to precedence
and/or associativity:

Conflict in state 8 between rule 2 and token ’+’ resolved as reduce.
Conflict in state 8 between rule 2 and token ’-’ resolved as reduce.
Conflict in state 8 between rule 2 and token ’*’ resolved as shift.
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. . .
The next section lists states that still have conflicts.

State 8 conflicts: 1 shift/reduce
State 9 conflicts: 1 shift/reduce
State 10 conflicts: 1 shift/reduce
State 11 conflicts: 4 shift/reduce

The next section reports useless tokens, nonterminal and rules. Useless nonterminals and
rules are removed in order to produce a smaller parser, but useless tokens are preserved,
since they might be used by the scanner (note the difference between “useless” and “unused”
below):

Nonterminals useless in grammar:
useless

Terminals unused in grammar:
STR

Rules useless in grammar:
#6 useless: STR;

The next section reproduces the exact grammar that Bison used:
Grammar

Number, Line, Rule
0 5 $accept -> exp $end
1 5 exp -> exp ’+’ exp
2 6 exp -> exp ’-’ exp
3 7 exp -> exp ’*’ exp
4 8 exp -> exp ’/’ exp
5 9 exp -> NUM

and reports the uses of the symbols:
Terminals, with rules where they appear

$end (0) 0
’*’ (42) 3
’+’ (43) 1
’-’ (45) 2
’/’ (47) 4
error (256)
NUM (258) 5

Nonterminals, with rules where they appear

$accept (8)
on left: 0

exp (9)
on left: 1 2 3 4 5, on right: 0 1 2 3 4
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Bison then proceeds onto the automaton itself, describing each state with it set of items,
also known as pointed rules. Each item is a production rule together with a point (marked
by ‘.’) that the input cursor.

state 0

$accept -> . exp $ (rule 0)

NUM shift, and go to state 1

exp go to state 2

This reads as follows: “state 0 corresponds to being at the very beginning of the parsing,
in the initial rule, right before the start symbol (here, exp). When the parser returns to
this state right after having reduced a rule that produced an exp, the control flow jumps to
state 2. If there is no such transition on a nonterminal symbol, and the lookahead is a NUM,
then this token is shifted on the parse stack, and the control flow jumps to state 1. Any
other lookahead triggers a syntax error.”

Even though the only active rule in state 0 seems to be rule 0, the report lists NUM as
a lookahead token because NUM can be at the beginning of any rule deriving an exp. By
default Bison reports the so-called core or kernel of the item set, but if you want to see
more detail you can invoke bison with ‘--report=itemset’ to list all the items, include
those that can be derived:

state 0

$accept -> . exp $ (rule 0)
exp -> . exp ’+’ exp (rule 1)
exp -> . exp ’-’ exp (rule 2)
exp -> . exp ’*’ exp (rule 3)
exp -> . exp ’/’ exp (rule 4)
exp -> . NUM (rule 5)

NUM shift, and go to state 1

exp go to state 2

In the state 1...
state 1

exp -> NUM . (rule 5)

$default reduce using rule 5 (exp)

the rule 5, ‘exp: NUM;’, is completed. Whatever the lookahead token (‘$default’), the
parser will reduce it. If it was coming from state 0, then, after this reduction it will return
to state 0, and will jump to state 2 (‘exp: go to state 2’).

state 2

$accept -> exp . $ (rule 0)
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exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

$ shift, and go to state 3
’+’ shift, and go to state 4
’-’ shift, and go to state 5
’*’ shift, and go to state 6
’/’ shift, and go to state 7

In state 2, the automaton can only shift a symbol. For instance, because of the item ‘exp
-> exp . ’+’ exp’, if the lookahead if ‘+’, it will be shifted on the parse stack, and the
automaton control will jump to state 4, corresponding to the item ‘exp -> exp ’+’ . exp’.
Since there is no default action, any other token than those listed above will trigger a syntax
error.

The state 3 is named the final state, or the accepting state:

state 3

$accept -> exp $ . (rule 0)

$default accept

the initial rule is completed (the start symbol and the end of input were read), the parsing
exits successfully.

The interpretation of states 4 to 7 is straightforward, and is left to the reader.

state 4

exp -> exp ’+’ . exp (rule 1)

NUM shift, and go to state 1

exp go to state 8

state 5

exp -> exp ’-’ . exp (rule 2)

NUM shift, and go to state 1

exp go to state 9

state 6

exp -> exp ’*’ . exp (rule 3)

NUM shift, and go to state 1
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exp go to state 10

state 7

exp -> exp ’/’ . exp (rule 4)

NUM shift, and go to state 1

exp go to state 11

As was announced in beginning of the report, ‘State 8 conflicts: 1 shift/reduce’:

state 8

exp -> exp . ’+’ exp (rule 1)
exp -> exp ’+’ exp . (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

’*’ shift, and go to state 6
’/’ shift, and go to state 7

’/’ [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)

Indeed, there are two actions associated to the lookahead ‘/’: either shifting (and going
to state 7), or reducing rule 1. The conflict means that either the grammar is ambiguous, or
the parser lacks information to make the right decision. Indeed the grammar is ambiguous,
as, since we did not specify the precedence of ‘/’, the sentence ‘NUM + NUM / NUM’ can be
parsed as ‘NUM + (NUM / NUM)’, which corresponds to shifting ‘/’, or as ‘(NUM + NUM) / NUM’,
which corresponds to reducing rule 1.

Because in LALR(1) parsing a single decision can be made, Bison arbitrarily chose to
disable the reduction, see Section 5.2 [Shift/Reduce Conflicts], page 90. Discarded actions
are reported in between square brackets.

Note that all the previous states had a single possible action: either shifting the next
token and going to the corresponding state, or reducing a single rule. In the other cases,
i.e., when shifting and reducing is possible or when several reductions are possible, the
lookahead is required to select the action. State 8 is one such state: if the lookahead is ‘*’
or ‘/’ then the action is shifting, otherwise the action is reducing rule 1. In other words, the
first two items, corresponding to rule 1, are not eligible when the lookahead token is ‘*’, since
we specified that ‘*’ has higher precedence than ‘+’. More generally, some items are eligible
only with some set of possible lookahead tokens. When run with ‘--report=lookahead’,
Bison specifies these lookahead tokens:

state 8

exp -> exp . ’+’ exp (rule 1)
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exp -> exp ’+’ exp . [$, ’+’, ’-’, ’/’] (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

’*’ shift, and go to state 6
’/’ shift, and go to state 7

’/’ [reduce using rule 1 (exp)]
$default reduce using rule 1 (exp)

The remaining states are similar:

state 9

exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp ’-’ exp . (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)

’*’ shift, and go to state 6
’/’ shift, and go to state 7

’/’ [reduce using rule 2 (exp)]
$default reduce using rule 2 (exp)

state 10

exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp ’*’ exp . (rule 3)
exp -> exp . ’/’ exp (rule 4)

’/’ shift, and go to state 7

’/’ [reduce using rule 3 (exp)]
$default reduce using rule 3 (exp)

state 11

exp -> exp . ’+’ exp (rule 1)
exp -> exp . ’-’ exp (rule 2)
exp -> exp . ’*’ exp (rule 3)
exp -> exp . ’/’ exp (rule 4)
exp -> exp ’/’ exp . (rule 4)
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’+’ shift, and go to state 4
’-’ shift, and go to state 5
’*’ shift, and go to state 6
’/’ shift, and go to state 7

’+’ [reduce using rule 4 (exp)]
’-’ [reduce using rule 4 (exp)]
’*’ [reduce using rule 4 (exp)]
’/’ [reduce using rule 4 (exp)]
$default reduce using rule 4 (exp)

Observe that state 11 contains conflicts not only due to the lack of precedence of ‘/’ with
respect to ‘+’, ‘-’, and ‘*’, but also because the associativity of ‘/’ is not specified.

8.2 Tracing Your Parser

If a Bison grammar compiles properly but doesn’t do what you want when it runs, the
yydebug parser-trace feature can help you figure out why.

There are several means to enable compilation of trace facilities:

the macro YYDEBUG
Define the macro YYDEBUG to a nonzero value when you compile the parser.
This is compliant with POSIX Yacc. You could use ‘-DYYDEBUG=1’ as a compiler
option or you could put ‘#define YYDEBUG 1’ in the prologue of the grammar
file (see Section 3.1.1 [The Prologue], page 47).

the option ‘-t’, ‘--debug’
Use the ‘-t’ option when you run Bison (see Chapter 9 [Invoking Bison],
page 115). This is POSIX compliant too.

the directive ‘%debug’
Add the %debug directive (see Section 3.7.12 [Bison Declaration Summary],
page 72). This is a Bison extension, which will prove useful when Bison will
output parsers for languages that don’t use a preprocessor. Unless POSIX and
Yacc portability matter to you, this is the preferred solution.

We suggest that you always enable the debug option so that debugging is always possible.
The trace facility outputs messages with macro calls of the form YYFPRINTF (stderr,

format, args) where format and args are the usual printf format and variadic argu-
ments. If you define YYDEBUG to a nonzero value but do not define YYFPRINTF, <stdio.h>
is automatically included and YYFPRINTF is defined to fprintf.

Once you have compiled the program with trace facilities, the way to request a trace is
to store a nonzero value in the variable yydebug. You can do this by making the C code do
it (in main, perhaps), or you can alter the value with a C debugger.

Each step taken by the parser when yydebug is nonzero produces a line or two of trace
information, written on stderr. The trace messages tell you these things:
• Each time the parser calls yylex, what kind of token was read.
• Each time a token is shifted, the depth and complete contents of the state stack (see

Section 5.5 [Parser States], page 93).



114 Bison 2.4.1

• Each time a rule is reduced, which rule it is, and the complete contents of the state
stack afterward.

To make sense of this information, it helps to refer to the listing file produced by the
Bison ‘-v’ option (see Chapter 9 [Invoking Bison], page 115). This file shows the meaning
of each state in terms of positions in various rules, and also what each state will do with
each possible input token. As you read the successive trace messages, you can see that the
parser is functioning according to its specification in the listing file. Eventually you will
arrive at the place where something undesirable happens, and you will see which parts of
the grammar are to blame.

The parser file is a C program and you can use C debuggers on it, but it’s not easy to
interpret what it is doing. The parser function is a finite-state machine interpreter, and
aside from the actions it executes the same code over and over. Only the values of variables
show where in the grammar it is working.

The debugging information normally gives the token type of each token read, but not
its semantic value. You can optionally define a macro named YYPRINT to provide a way to
print the value. If you define YYPRINT, it should take three arguments. The parser will pass
a standard I/O stream, the numeric code for the token type, and the token value (from
yylval).

Here is an example of YYPRINT suitable for the multi-function calculator (see Section 2.5.1
[Declarations for mfcalc], page 40):

%{

static void print_token_value (FILE *, int, YYSTYPE);

#define YYPRINT(file, type, value) print_token_value (file, type, value)

%}

... %% ... %% ...

static void

print_token_value (FILE *file, int type, YYSTYPE value)

{

if (type == VAR)

fprintf (file, "%s", value.tptr->name);

else if (type == NUM)

fprintf (file, "%d", value.val);

}
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9 Invoking Bison

The usual way to invoke Bison is as follows:

bison infile

Here infile is the grammar file name, which usually ends in ‘.y’. The parser file’s name
is made by replacing the ‘.y’ with ‘.tab.c’ and removing any leading directory. Thus, the
‘bison foo.y’ file name yields ‘foo.tab.c’, and the ‘bison hack/foo.y’ file name yields
‘foo.tab.c’. It’s also possible, in case you are writing C++ code instead of C in your gram-
mar file, to name it ‘foo.ypp’ or ‘foo.y++’. Then, the output files will take an extension
like the given one as input (respectively ‘foo.tab.cpp’ and ‘foo.tab.c++’). This feature
takes effect with all options that manipulate file names like ‘-o’ or ‘-d’.

For example :

bison -d infile.yxx

will produce ‘infile.tab.cxx’ and ‘infile.tab.hxx’, and

bison -d -o output.c++ infile.y

will produce ‘output.c++’ and ‘outfile.h++’.

For compatibility with POSIX, the standard Bison distribution also contains a shell script
called yacc that invokes Bison with the ‘-y’ option.

9.1 Bison Options

Bison supports both traditional single-letter options and mnemonic long option names.
Long option names are indicated with ‘--’ instead of ‘-’. Abbreviations for option names
are allowed as long as they are unique. When a long option takes an argument, like
‘--file-prefix’, connect the option name and the argument with ‘=’.

Here is a list of options that can be used with Bison, alphabetized by short option. It is
followed by a cross key alphabetized by long option.

Operations modes:

‘-h’
‘--help’ Print a summary of the command-line options to Bison and exit.

‘-V’
‘--version’

Print the version number of Bison and exit.

‘--print-localedir’
Print the name of the directory containing locale-dependent data.

‘--print-datadir’
Print the name of the directory containing skeletons and XSLT.

‘-y’
‘--yacc’ Act more like the traditional Yacc command. This can cause different diag-

nostics to be generated, and may change behavior in other minor ways. Most
importantly, imitate Yacc’s output file name conventions, so that the parser
output file is called ‘y.tab.c’, and the other outputs are called ‘y.output’ and
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‘y.tab.h’. Also, if generating an LALR(1) parser in C, generate #define state-
ments in addition to an enum to associate token numbers with token names.
Thus, the following shell script can substitute for Yacc, and the Bison distribu-
tion contains such a script for compatibility with POSIX:

#! /bin/sh
bison -y "$@"

The ‘-y’/‘--yacc’ option is intended for use with traditional Yacc grammars.
If your grammar uses a Bison extension like ‘%glr-parser’, Bison might not
be Yacc-compatible even if this option is specified.

‘-W’
‘--warnings’

Output warnings falling in category. category can be one of:

midrule-values
Warn about mid-rule values that are set but not used within any
of the actions of the parent rule. For example, warn about unused
$2 in:

exp: ’1’ { $$ = 1; } ’+’ exp { $$ = $1 + $4; };

Also warn about mid-rule values that are used but not set. For
example, warn about unset $$ in the mid-rule action in:

exp: ’1’ { $1 = 1; } ’+’ exp { $$ = $2 + $4; };

These warnings are not enabled by default since they sometimes
prove to be false alarms in existing grammars employing the Yacc
constructs $0 or $-n (where n is some positive integer).

yacc Incompatibilities with POSIX Yacc.

all All the warnings.

none Turn off all the warnings.

error Treat warnings as errors.

A category can be turned off by prefixing its name with ‘no-’. For instance,
‘-Wno-syntax’ will hide the warnings about unused variables.

Tuning the parser:

‘-t’
‘--debug’ In the parser file, define the macro YYDEBUG to 1 if it is not already defined,

so that the debugging facilities are compiled. See Section 8.2 [Tracing Your
Parser], page 113.

‘-L language ’
‘--language=language ’

Specify the programming language for the generated parser, as if %language was
specified (see Section 3.7.12 [Bison Declaration Summary], page 72). Currently
supported languages include C, C++, and Java. language is case-insensitive.
This option is experimental and its effect may be modified in future releases.
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‘--locations’
Pretend that %locations was specified. See Section 3.7.12 [Decl Summary],
page 72.

‘-p prefix ’
‘--name-prefix=prefix ’

Pretend that %name-prefix "prefix" was specified. See Section 3.7.12 [Decl
Summary], page 72.

‘-l’
‘--no-lines’

Don’t put any #line preprocessor commands in the parser file. Ordinarily
Bison puts them in the parser file so that the C compiler and debuggers will
associate errors with your source file, the grammar file. This option causes them
to associate errors with the parser file, treating it as an independent source file
in its own right.

‘-S file ’
‘--skeleton=file ’

Specify the skeleton to use, similar to %skeleton (see Section 3.7.12 [Bison
Declaration Summary], page 72).
If file does not contain a /, file is the name of a skeleton file in the Bison
installation directory. If it does, file is an absolute file name or a file name
relative to the current working directory. This is similar to how most shells
resolve commands.

‘-k’
‘--token-table’

Pretend that %token-table was specified. See Section 3.7.12 [Decl Summary],
page 72.

Adjust the output:

‘--defines[=file]’
Pretend that %defines was specified, i.e., write an extra output file containing
macro definitions for the token type names defined in the grammar, as well as
a few other declarations. See Section 3.7.12 [Decl Summary], page 72.

‘-d’ This is the same as --defines except -d does not accept a file argument since
POSIX Yacc requires that -d can be bundled with other short options.

‘-b file-prefix ’
‘--file-prefix=prefix ’

Pretend that %file-prefix was specified, i.e., specify prefix to use for all Bison
output file names. See Section 3.7.12 [Decl Summary], page 72.

‘-r things ’
‘--report=things ’

Write an extra output file containing verbose description of the comma sepa-
rated list of things among:

state Description of the grammar, conflicts (resolved and unresolved),
and LALR automaton.
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lookahead
Implies state and augments the description of the automaton with
each rule’s lookahead set.

itemset Implies state and augments the description of the automaton with
the full set of items for each state, instead of its core only.

‘--report-file=file ’
Specify the file for the verbose description.

‘-v’
‘--verbose’

Pretend that %verbose was specified, i.e., write an extra output file contain-
ing verbose descriptions of the grammar and parser. See Section 3.7.12 [Decl
Summary], page 72.

‘-o file ’
‘--output=file ’

Specify the file for the parser file.
The other output files’ names are constructed from file as described under the
‘-v’ and ‘-d’ options.

‘-g[file]’
‘--graph[=file]’

Output a graphical representation of the LALR(1) grammar automaton com-
puted by Bison, in Graphviz DOT format. file is optional. If omitted and the
grammar file is ‘foo.y’, the output file will be ‘foo.dot’.

‘-x[file]’
‘--xml[=file]’

Output an XML report of the LALR(1) automaton computed by Bison. file

is optional. If omitted and the grammar file is ‘foo.y’, the output file will be
‘foo.xml’. (The current XML schema is experimental and may evolve. More
user feedback will help to stabilize it.)

9.2 Option Cross Key

Here is a list of options, alphabetized by long option, to help you find the corresponding
short option.

Long Option Short Option
‘--debug’ ‘-t’
‘--defines=[file]’
‘--file-prefix=prefix ’ ‘-b’ prefix
‘--graph=[file]’ ‘-g’ [file]
‘--help’ ‘-h’
‘--language=language ’ ‘-L’ language
‘--locations’
‘--name-prefix=prefix ’ ‘-p’ prefix
‘--no-lines’ ‘-l’

http://www.graphviz.org/
http://www.graphviz.org/doc/info/lang.html
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‘--output=file ’ ‘-o’ file
‘--print-datadir’
‘--print-localedir’
‘--report-file=file ’
‘--report=things ’ ‘-r’ things
‘--skeleton=file ’ ‘-S’ file
‘--token-table’ ‘-k’
‘--verbose’ ‘-v’
‘--version’ ‘-V’
‘--warnings’ ‘-W’
‘--xml=[file]’ ‘-x’ [file]
‘--yacc’ ‘-y’

9.3 Yacc Library

The Yacc library contains default implementations of the yyerror and main functions.
These default implementations are normally not useful, but POSIX requires them. To use
the Yacc library, link your program with the ‘-ly’ option. Note that Bison’s implementation
of the Yacc library is distributed under the terms of the GNU General Public License (see
[Copying], page 5).

If you use the Yacc library’s yyerror function, you should declare yyerror as follows:
int yyerror (char const *);

Bison ignores the int value returned by this yyerror. If you use the Yacc library’s main
function, your yyparse function should have the following type signature:

int yyparse (void);
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10 Parsers Written In Other Languages

10.1 C++ Parsers

10.1.1 C++ Bison Interface

The C++ LALR(1) parser is selected using the skeleton directive, ‘%skeleton "lalr1.c"’,
or the synonymous command-line option ‘--skeleton=lalr1.c’. See Section 3.7.12 [Decl
Summary], page 72.

When run, bison will create several entities in the ‘yy’ namespace. Use the ‘%define
namespace’ directive to change the namespace name, see Section 3.7.12 [Decl Summary],
page 72. The various classes are generated in the following files:

‘position.hh’
‘location.hh’

The definition of the classes position and location, used for location tracking.
See Section 10.1.3 [C++ Location Values], page 122.

‘stack.hh’
An auxiliary class stack used by the parser.

‘file.hh’
‘file.cc’ (Assuming the extension of the input file was ‘.yy’.) The declaration and im-

plementation of the C++ parser class. The basename and extension of these two
files follow the same rules as with regular C parsers (see Chapter 9 [Invocation],
page 115).

The header is mandatory ; you must either pass ‘-d’/‘--defines’ to bison, or
use the ‘%defines’ directive.

All these files are documented using Doxygen; run doxygen for a complete and accurate
documentation.

10.1.2 C++ Semantic Values

The %union directive works as for C, see Section 3.7.4 [The Collection of Value Types],
page 66. In particular it produces a genuine union1, which have a few specific features in
C++.

− The type YYSTYPE is defined but its use is discouraged: rather you should refer to the
parser’s encapsulated type yy::parser::semantic_type.

− Non POD (Plain Old Data) types cannot be used. C++ forbids any instance of classes
with constructors in unions: only pointers to such objects are allowed.

Because objects have to be stored via pointers, memory is not reclaimed automatically:
using the %destructor directive is the only means to avoid leaks. See Section 3.7.7 [Freeing
Discarded Symbols], page 67.

1 In the future techniques to allow complex types within pseudo-unions (similar to Boost variants) might
be implemented to alleviate these issues.
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10.1.3 C++ Location Values

When the directive %locations is used, the C++ parser supports location tracking, see
Section 3.6 [Locations Overview], page 61. Two auxiliary classes define a position, a
single point in a file, and a location, a range composed of a pair of positions (possibly
spanning several files).

[Method on position]std::string* file
The name of the file. It will always be handled as a pointer, the parser will never
duplicate nor deallocate it. As an experimental feature you may change it to ‘type*’
using ‘%define filename_type "type"’.

[Method on position]unsigned int line
The line, starting at 1.

[Method on position]unsigned int lines (int height = 1)
Advance by height lines, resetting the column number.

[Method on position]unsigned int column
The column, starting at 0.

[Method on position]unsigned int columns (int width = 1)
Advance by width columns, without changing the line number.

[Method on position]position& operator+= (position& pos, int width )
[Method on position]position operator+ (const position& pos, int width )
[Method on position]position& operator-= (const position& pos, int width )
[Method on position]position operator- (position& pos, int width )

Various forms of syntactic sugar for columns.

[Method on position]position operator<< (std::ostream o, const position& p )
Report p on o like this: ‘file:line.column ’, or ‘line.column ’ if file is null.

[Method on location]position begin
[Method on location]position end

The first, inclusive, position of the range, and the first beyond.

[Method on location]unsigned int columns (int width = 1)
[Method on location]unsigned int lines (int height = 1)

Advance the end position.

[Method on location]location operator+ (const location& begin, const
location& end )

[Method on location]location operator+ (const location& begin, int width )
[Method on location]location operator+= (const location& loc, int width )

Various forms of syntactic sugar.

[Method on location]void step ()
Move begin onto end.
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10.1.4 C++ Parser Interface

The output files ‘output.hh’ and ‘output.cc’ declare and define the parser class in the
namespace yy. The class name defaults to parser, but may be changed using ‘%define
parser_class_name "name"’. The interface of this class is detailed below. It can be ex-
tended using the %parse-param feature: its semantics is slightly changed since it describes
an additional member of the parser class, and an additional argument for its constructor.

[Type of parser]semantic_value_type
[Type of parser]location_value_type

The types for semantics value and locations.

[Method on parser]parser (type1 arg1, ...)
Build a new parser object. There are no arguments by default, unless ‘%parse-param
{type1 arg1}’ was used.

[Method on parser]int parse ()
Run the syntactic analysis, and return 0 on success, 1 otherwise.

[Method on parser]std::ostream& debug_stream ()
[Method on parser]void set_debug_stream (std::ostream& o )

Get or set the stream used for tracing the parsing. It defaults to std::cerr.

[Method on parser]debug_level_type debug_level ()
[Method on parser]void set_debug_level (debug level l )

Get or set the tracing level. Currently its value is either 0, no trace, or nonzero, full
tracing.

[Method on parser]void error (const location type& l, const std::string& m )
The definition for this member function must be supplied by the user: the parser uses
it to report a parser error occurring at l, described by m.

10.1.5 C++ Scanner Interface

The parser invokes the scanner by calling yylex. Contrary to C parsers, C++ parsers are
always pure: there is no point in using the %define api.pure directive. Therefore the
interface is as follows.

[Method on parser]int yylex (semantic value type& yylval, location type&
yylloc, type1 arg1, ...)

Return the next token. Its type is the return value, its semantic value and location
being yylval and yylloc. Invocations of ‘%lex-param {type1 arg1}’ yield additional
arguments.

10.1.6 A Complete C++ Example

This section demonstrates the use of a C++ parser with a simple but complete example.
This example should be available on your system, ready to compile, in the directory ../bi-
son/examples/calc++. It focuses on the use of Bison, therefore the design of the various
C++ classes is very naive: no accessors, no encapsulation of members etc. We will use a
Lex scanner, and more precisely, a Flex scanner, to demonstrate the various interaction. A
hand written scanner is actually easier to interface with.
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10.1.6.1 Calc++ — C++ Calculator

Of course the grammar is dedicated to arithmetics, a single expression, possibly preceded
by variable assignments. An environment containing possibly predefined variables such as
one and two, is exchanged with the parser. An example of valid input follows.

three := 3
seven := one + two * three
seven * seven

10.1.6.2 Calc++ Parsing Driver

To support a pure interface with the parser (and the scanner) the technique of the “parsing
context” is convenient: a structure containing all the data to exchange. Since, in addition
to simply launch the parsing, there are several auxiliary tasks to execute (open the file for
parsing, instantiate the parser etc.), we recommend transforming the simple parsing context
structure into a fully blown parsing driver class.

The declaration of this driver class, ‘calc++-driver.hh’, is as follows. The first part
includes the CPP guard and imports the required standard library components, and the
declaration of the parser class.

#ifndef CALCXX_DRIVER_HH
# define CALCXX_DRIVER_HH
# include <string>
# include <map>
# include "calc++-parser.hh"

Then comes the declaration of the scanning function. Flex expects the signature of yylex
to be defined in the macro YY_DECL, and the C++ parser expects it to be declared. We can
factor both as follows.

// Tell Flex the lexer’s prototype ...
# define YY_DECL \
yy::calcxx_parser::token_type \
yylex (yy::calcxx_parser::semantic_type* yylval, \

yy::calcxx_parser::location_type* yylloc, \
calcxx_driver& driver)

// ... and declare it for the parser’s sake.
YY_DECL;

The calcxx_driver class is then declared with its most obvious members.

// Conducting the whole scanning and parsing of Calc++.
class calcxx_driver
{
public:
calcxx_driver ();
virtual ~calcxx_driver ();

std::map<std::string, int> variables;

int result;
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To encapsulate the coordination with the Flex scanner, it is useful to have two members
function to open and close the scanning phase.

// Handling the scanner.
void scan_begin ();
void scan_end ();
bool trace_scanning;

Similarly for the parser itself.

// Run the parser. Return 0 on success.
int parse (const std::string& f);
std::string file;
bool trace_parsing;

To demonstrate pure handling of parse errors, instead of simply dumping them on the
standard error output, we will pass them to the compiler driver using the following two
member functions. Finally, we close the class declaration and CPP guard.

// Error handling.
void error (const yy::location& l, const std::string& m);
void error (const std::string& m);

};
#endif // ! CALCXX_DRIVER_HH

The implementation of the driver is straightforward. The parse member function de-
serves some attention. The error functions are simple stubs, they should actually register
the located error messages and set error state.

#include "calc++-driver.hh"
#include "calc++-parser.hh"

calcxx_driver::calcxx_driver ()
: trace_scanning (false), trace_parsing (false)

{
variables["one"] = 1;
variables["two"] = 2;

}

calcxx_driver::~calcxx_driver ()
{
}

int
calcxx_driver::parse (const std::string &f)
{
file = f;
scan_begin ();
yy::calcxx_parser parser (*this);
parser.set_debug_level (trace_parsing);
int res = parser.parse ();
scan_end ();
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return res;
}

void
calcxx_driver::error (const yy::location& l, const std::string& m)
{
std::cerr << l << ": " << m << std::endl;

}

void
calcxx_driver::error (const std::string& m)
{
std::cerr << m << std::endl;

}

10.1.6.3 Calc++ Parser

The parser definition file ‘calc++-parser.yy’ starts by asking for the C++ LALR(1) skele-
ton, the creation of the parser header file, and specifies the name of the parser class. Because
the C++ skeleton changed several times, it is safer to require the version you designed the
grammar for.

%skeleton "lalr1.cc" /* -*- C++ -*- */
%require "2.4.1"
%defines
%define parser_class_name "calcxx_parser"

Then come the declarations/inclusions needed to define the %union. Because the parser uses
the parsing driver and reciprocally, both cannot include the header of the other. Because
the driver’s header needs detailed knowledge about the parser class (in particular its inner
types), it is the parser’s header which will simply use a forward declaration of the driver.
See Section 3.7.12 [%code], page 72.

%code requires {
# include <string>
class calcxx_driver;
}

The driver is passed by reference to the parser and to the scanner. This provides a simple
but effective pure interface, not relying on global variables.

// The parsing context.
%parse-param { calcxx_driver& driver }
%lex-param { calcxx_driver& driver }

Then we request the location tracking feature, and initialize the first location’s file name.
Afterwards new locations are computed relatively to the previous locations: the file name
will be automatically propagated.

%locations
%initial-action
{
// Initialize the initial location.
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@$.begin.filename = @$.end.filename = &driver.file;
};

Use the two following directives to enable parser tracing and verbose error messages.
%debug
%error-verbose

Semantic values cannot use “real” objects, but only pointers to them.
// Symbols.
%union
{
int ival;
std::string *sval;

};

The code between ‘%code {’ and ‘}’ is output in the ‘*.cc’ file; it needs detailed knowledge
about the driver.

%code {
# include "calc++-driver.hh"
}

The token numbered as 0 corresponds to end of file; the following line allows for nicer error
messages referring to “end of file” instead of “$end”. Similarly user friendly named are
provided for each symbol. Note that the tokens names are prefixed by TOKEN_ to avoid
name clashes.

%token END 0 "end of file"
%token ASSIGN ":="
%token <sval> IDENTIFIER "identifier"
%token <ival> NUMBER "number"
%type <ival> exp

To enable memory deallocation during error recovery, use %destructor.
%printer { debug_stream () << *$$; } "identifier"
%destructor { delete $$; } "identifier"

%printer { debug_stream () << $$; } <ival>

The grammar itself is straightforward.
%%
%start unit;
unit: assignments exp { driver.result = $2; };

assignments: assignments assignment {}
| /* Nothing. */ {};

assignment:
"identifier" ":=" exp
{ driver.variables[*$1] = $3; delete $1; };

%left ’+’ ’-’;
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%left ’*’ ’/’;
exp: exp ’+’ exp { $$ = $1 + $3; }

| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }
| exp ’/’ exp { $$ = $1 / $3; }
| "identifier" { $$ = driver.variables[*$1]; delete $1; }
| "number" { $$ = $1; };

%%

Finally the error member function registers the errors to the driver.
void
yy::calcxx_parser::error (const yy::calcxx_parser::location_type& l,

const std::string& m)
{
driver.error (l, m);

}

10.1.6.4 Calc++ Scanner

The Flex scanner first includes the driver declaration, then the parser’s to get the set of
defined tokens.

%{ /* -*- C++ -*- */
# include <cstdlib>
# include <errno.h>
# include <limits.h>
# include <string>
# include "calc++-driver.hh"
# include "calc++-parser.hh"

/* Work around an incompatibility in flex (at least versions
2.5.31 through 2.5.33): it generates code that does
not conform to C89. See Debian bug 333231
<http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=333231>. */

# undef yywrap
# define yywrap() 1

/* By default yylex returns int, we use token_type.
Unfortunately yyterminate by default returns 0, which is
not of token_type. */

#define yyterminate() return token::END
%}

Because there is no #include-like feature we don’t need yywrap, we don’t need unput
either, and we parse an actual file, this is not an interactive session with the user. Finally
we enable the scanner tracing features.

%option noyywrap nounput batch debug

Abbreviations allow for more readable rules.
id [a-zA-Z][a-zA-Z_0-9]*
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int [0-9]+
blank [ \t]

The following paragraph suffices to track locations accurately. Each time yylex is invoked,
the begin position is moved onto the end position. Then when a pattern is matched, the
end position is advanced of its width. In case it matched ends of lines, the end cursor is
adjusted, and each time blanks are matched, the begin cursor is moved onto the end cursor
to effectively ignore the blanks preceding tokens. Comments would be treated equally.

%{
# define YY_USER_ACTION yylloc->columns (yyleng);
%}
%%
%{
yylloc->step ();

%}
{blank}+ yylloc->step ();
[\n]+ yylloc->lines (yyleng); yylloc->step ();

The rules are simple, just note the use of the driver to report errors. It is convenient to use
a typedef to shorten yy::calcxx_parser::token::identifier into token::identifier
for instance.

%{
typedef yy::calcxx_parser::token token;

%}
/* Convert ints to the actual type of tokens. */

[-+*/] return yy::calcxx_parser::token_type (yytext[0]);
":=" return token::ASSIGN;
{int} {
errno = 0;
long n = strtol (yytext, NULL, 10);
if (! (INT_MIN <= n && n <= INT_MAX && errno != ERANGE))
driver.error (*yylloc, "integer is out of range");

yylval->ival = n;
return token::NUMBER;

}
{id} yylval->sval = new std::string (yytext); return token::IDENTIFIER;
. driver.error (*yylloc, "invalid character");
%%

Finally, because the scanner related driver’s member function depend on the scanner’s data,
it is simpler to implement them in this file.

void
calcxx_driver::scan_begin ()
{
yy_flex_debug = trace_scanning;
if (file == "-")
yyin = stdin;

else if (!(yyin = fopen (file.c_str (), "r")))
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{
error (std::string ("cannot open ") + file);
exit (1);

}
}

void
calcxx_driver::scan_end ()
{
fclose (yyin);

}

10.1.6.5 Calc++ Top Level

The top level file, ‘calc++.cc’, poses no problem.
#include <iostream>
#include "calc++-driver.hh"

int
main (int argc, char *argv[])
{
calcxx_driver driver;
for (++argv; argv[0]; ++argv)
if (*argv == std::string ("-p"))

driver.trace_parsing = true;
else if (*argv == std::string ("-s"))

driver.trace_scanning = true;
else if (!driver.parse (*argv))

std::cout << driver.result << std::endl;
}

10.2 Java Parsers

10.2.1 Java Bison Interface

(The current Java interface is experimental and may evolve. More user feedback will help
to stabilize it.)

The Java parser skeletons are selected using the %language "Java" directive or the ‘-L
java’/‘--language=java’ option.

When generating a Java parser, bison basename.y will create a single Java source file
named ‘basename.java’. Using an input file without a ‘.y’ suffix is currently broken.
The basename of the output file can be changed by the %file-prefix directive or the
‘-p’/‘--name-prefix’ option. The entire output file name can be changed by the %output
directive or the ‘-o’/‘--output’ option. The output file contains a single class for the parser.

You can create documentation for generated parsers using Javadoc.
Contrary to C parsers, Java parsers do not use global variables; the state of the parser

is always local to an instance of the parser class. Therefore, all Java parsers are “pure”,
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and the %pure-parser and %define api.pure directives does not do anything when used
in Java.

Push parsers are currently unsupported in Java and %define api.push_pull have no
effect.

GLR parsers are currently unsupported in Java. Do not use the glr-parser directive.

No header file can be generated for Java parsers. Do not use the %defines directive or
the ‘-d’/‘--defines’ options.

Currently, support for debugging and verbose errors are always compiled in. Thus the
%debug and %token-table directives and the ‘-t’/‘--debug’ and ‘-k’/‘--token-table’
options have no effect. This may change in the future to eliminate unused code in the
generated parser, so use %debug and %verbose-error explicitly if needed. Also, in the
future the %token-table directive might enable a public interface to access the token names
and codes.

10.2.2 Java Semantic Values

There is no %union directive in Java parsers. Instead, the semantic values’ types (class
names) should be specified in the %type or %token directive:

%type <Expression> expr assignment_expr term factor
%type <Integer> number

By default, the semantic stack is declared to have Object members, which means that
the class types you specify can be of any class. To improve the type safety of the parser,
you can declare the common superclass of all the semantic values using the %define stype
directive. For example, after the following declaration:

%define stype "ASTNode"

any %type or %token specifying a semantic type which is not a subclass of ASTNode, will
cause a compile-time error.

Types used in the directives may be qualified with a package name. Primitive data types
are accepted for Java version 1.5 or later. Note that in this case the autoboxing feature of
Java 1.5 will be used. Generic types may not be used; this is due to a limitation in the
implementation of Bison, and may change in future releases.

Java parsers do not support %destructor, since the language adopts garbage collection.
The parser will try to hold references to semantic values for as little time as needed.

Java parsers do not support %printer, as toString() can be used to print the semantic
values. This however may change (in a backwards-compatible way) in future versions of
Bison.

10.2.3 Java Location Values

When the directive %locations is used, the Java parser supports location tracking, see
Section 3.6 [Locations Overview], page 61. An auxiliary user-defined class defines a position,
a single point in a file; Bison itself defines a class representing a location, a range composed
of a pair of positions (possibly spanning several files). The location class is an inner class
of the parser; the name is Location by default, and may also be renamed using %define
location_type "class-name .
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The location class treats the position as a completely opaque value. By default, the class
name is Position, but this can be changed with %define position_type "class-name".
This class must be supplied by the user.

[Instance Variable of Location]Position begin
[Instance Variable of Location]Position end

The first, inclusive, position of the range, and the first beyond.

[Constructor on Location]Location (Position loc )
Create a Location denoting an empty range located at a given point.

[Constructor on Location]Location (Position begin, Position end )
Create a Location from the endpoints of the range.

[Method on Location]String toString ()
Prints the range represented by the location. For this to work properly, the position
class should override the equals and toString methods appropriately.

10.2.4 Java Parser Interface

The name of the generated parser class defaults to YYParser. The YY prefix may be changed
using the %name-prefix directive or the ‘-p’/‘--name-prefix’ option. Alternatively, use
%define parser_class_name "name" to give a custom name to the class. The interface of
this class is detailed below.

By default, the parser class has package visibility. A declaration %define public will
change to public visibility. Remember that, according to the Java language specification,
the name of the ‘.java’ file should match the name of the class in this case. Similarly,
you can use abstract, final and strictfp with the %define declaration to add other
modifiers to the parser class.

The Java package name of the parser class can be specified using the %define package
directive. The superclass and the implemented interfaces of the parser class can be specified
with the %define extends and %define implements directives.

The parser class defines an inner class, Location, that is used for location tracking
(see Section 10.2.3 [Java Location Values], page 131), and a inner interface, Lexer (see
Section 10.2.5 [Java Scanner Interface], page 133). Other than these inner class/interface,
and the members described in the interface below, all the other members and fields are
preceded with a yy or YY prefix to avoid clashes with user code.

The parser class can be extended using the %parse-param directive. Each occurrence of
the directive will add a protected final field to the parser class, and an argument to its
constructor, which initialize them automatically.

Token names defined by %token and the predefined EOF token name are added as constant
fields to the parser class.

[Constructor on YYParser]YYParser (lex_param, . . . , parse_param, . . . )
Build a new parser object with embedded %code lexer. There are no parameters,
unless %parse-params and/or %lex-params are used.
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[Constructor on YYParser]YYParser (Lexer lexer, parse_param, . . . )
Build a new parser object using the specified scanner. There are no additional pa-
rameters unless %parse-params are used.
If the scanner is defined by %code lexer, this constructor is declared protected and
is called automatically with a scanner created with the correct %lex-params.

[Method on YYParser]boolean parse ()
Run the syntactic analysis, and return true on success, false otherwise.

[Method on YYParser]boolean recovering ()
During the syntactic analysis, return true if recovering from a syntax error. See
Chapter 6 [Error Recovery], page 101.

[Method on YYParser]java.io.PrintStream getDebugStream ()
[Method on YYParser]void setDebugStream (java.io.printStream o )

Get or set the stream used for tracing the parsing. It defaults to System.err.

[Method on YYParser]int getDebugLevel ()
[Method on YYParser]void setDebugLevel (int l )

Get or set the tracing level. Currently its value is either 0, no trace, or nonzero, full
tracing.

10.2.5 Java Scanner Interface

There are two possible ways to interface a Bison-generated Java parser with a scanner: the
scanner may be defined by %code lexer, or defined elsewhere. In either case, the scanner
has to implement the Lexer inner interface of the parser class.

In the first case, the body of the scanner class is placed in %code lexer blocks. If you
want to pass parameters from the parser constructor to the scanner constructor, specify
them with %lex-param; they are passed before %parse-params to the constructor.

In the second case, the scanner has to implement the Lexer interface, which is defined
within the parser class (e.g., YYParser.Lexer). The constructor of the parser object will
then accept an object implementing the interface; %lex-param is not used in this case.

In both cases, the scanner has to implement the following methods.

[Method on Lexer]void yyerror (Location loc, String msg )
This method is defined by the user to emit an error message. The first parameter
is omitted if location tracking is not active. Its type can be changed using %define
location_type "class-name".

[Method on Lexer]int yylex ()
Return the next token. Its type is the return value, its semantic value and location
are saved and returned by the ther methods in the interface.
Use %define lex_throws to specify any uncaught exceptions. Default is
java.io.IOException.

[Method on Lexer]Position getStartPos ()
[Method on Lexer]Position getEndPos ()

Return respectively the first position of the last token that yylex returned, and the
first position beyond it. These methods are not needed unless location tracking is
active.
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The return type can be changed using %define position_type "class-name".

[Method on Lexer]Object getLVal ()
Return the semantical value of the last token that yylex returned.

The return type can be changed using %define stype "class-name".

10.2.6 Special Features for Use in Java Actions

The following special constructs can be uses in Java actions. Other analogous C action
features are currently unavailable for Java.

Use %define throws to specify any uncaught exceptions from parser actions, and initial
actions specified by %initial-action.

[Variable]$n
The semantic value for the nth component of the current rule. This may not be
assigned to. See Section 10.2.2 [Java Semantic Values], page 131.

[Variable]$<typealt>n
Like $n but specifies a alternative type typealt. See Section 10.2.2 [Java Semantic
Values], page 131.

[Variable]$$
The semantic value for the grouping made by the current rule. As a value, this is in the
base type (Object or as specified by %define stype) as in not cast to the declared
subtype because casts are not allowed on the left-hand side of Java assignments.
Use an explicit Java cast if the correct subtype is needed. See Section 10.2.2 [Java
Semantic Values], page 131.

[Variable]$<typealt>$
Same as $$ since Java always allow assigning to the base type. Perhaps we should
use this and $<>$ for the value and $$ for setting the value but there is currently no
easy way to distinguish these constructs. See Section 10.2.2 [Java Semantic Values],
page 131.

[Variable]@n
The location information of the nth component of the current rule. This may not be
assigned to. See Section 10.2.3 [Java Location Values], page 131.

[Variable]@$
The location information of the grouping made by the current rule. See Section 10.2.3
[Java Location Values], page 131.

[Statement]return YYABORT;
Return immediately from the parser, indicating failure. See Section 10.2.4 [Java
Parser Interface], page 132.

[Statement]return YYACCEPT;
Return immediately from the parser, indicating success. See Section 10.2.4 [Java
Parser Interface], page 132.
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[Statement]return YYERROR;
Start error recovery without printing an error message. See Chapter 6 [Error Recov-
ery], page 101.

[Statement]return YYFAIL;
Print an error message and start error recovery. See Chapter 6 [Error Recovery],
page 101.

[Function]boolean recovering ()
Return whether error recovery is being done. In this state, the parser reads token
until it reaches a known state, and then restarts normal operation. See Chapter 6
[Error Recovery], page 101.

[Function]protected void yyerror (String msg)
[Function]protected void yyerror (Position pos, String msg)
[Function]protected void yyerror (Location loc, String msg)

Print an error message using the yyerror method of the scanner instance in use.

10.2.7 Differences between C/C++ and Java Grammars

The different structure of the Java language forces several differences between C/C++ gram-
mars, and grammars designed for Java parsers. This section summarizes these differences.
• Java lacks a preprocessor, so the YYERROR, YYACCEPT, YYABORT symbols (see Appendix A

[Table of Symbols], page 145) cannot obviously be macros. Instead, they should be
preceded by return when they appear in an action. The actual definition of these
symbols is opaque to the Bison grammar, and it might change in the future. The only
meaningful operation that you can do, is to return them. See see Section 10.2.6 [Java
Action Features], page 134.
Note that of these three symbols, only YYACCEPT and YYABORT will cause a return from
the yyparse method2.

• Java lacks unions, so %union has no effect. Instead, semantic values have a common
base type: Object or as specified by %define stype. Angle backets on %token, type,
$n and $$ specify subtypes rather than fields of an union. The type of $$, even with
angle brackets, is the base type since Java casts are not allow on the left-hand side of
assignments. Also, $n and @n are not allowed on the left-hand side of assignments.
See see Section 10.2.2 [Java Semantic Values], page 131 and see Section 10.2.6 [Java
Action Features], page 134.

• The prolog declarations have a different meaning than in C/C++ code.

%code imports
blocks are placed at the beginning of the Java source code. They may
include copyright notices. For a package declarations, it is suggested to
use %define package instead.

unqualified %code
blocks are placed inside the parser class.

2 Java parsers include the actions in a separate method than yyparse in order to have an intuitive syntax
that corresponds to these C macros.
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%code lexer
blocks, if specified, should include the implementation of the scanner. If
there is no such block, the scanner can be any class that implements
the appropriate interface (see see Section 10.2.5 [Java Scanner Interface],
page 133).

Other %code blocks are not supported in Java parsers. In particular, %{ ... %} blocks
should not be used and may give an error in future versions of Bison.
The epilogue has the same meaning as in C/C++ code and it can be used to define
other classes used by the parser outside the parser class.

10.2.8 Java Declarations Summary

This summary only include declarations specific to Java or have special meaning when used
in a Java parser.

[Directive]%language "Java"
Generate a Java class for the parser.

[Directive]%lex-param {type name}
A parameter for the lexer class defined by %code lexer only, added as parameters to
the lexer constructor and the parser constructor that creates a lexer. Default is none.
See Section 10.2.5 [Java Scanner Interface], page 133.

[Directive]%name-prefix "prefix"
The prefix of the parser class name prefixParser if %define parser_class_name is
not used. Default is YY. See Section 10.2.1 [Java Bison Interface], page 130.

[Directive]%parse-param {type name}
A parameter for the parser class added as parameters to constructor(s) and as fields
initialized by the constructor(s). Default is none. See Section 10.2.4 [Java Parser
Interface], page 132.

[Directive]%token <type> token . . .
Declare tokens. Note that the angle brackets enclose a Java type. See Section 10.2.2
[Java Semantic Values], page 131.

[Directive]%type <type> nonterminal . . .
Declare the type of nonterminals. Note that the angle brackets enclose a Java type.
See Section 10.2.2 [Java Semantic Values], page 131.

[Directive]%code { code . . . }
Code appended to the inside of the parser class. See Section 10.2.7 [Java Differences],
page 135.

[Directive]%code imports { code . . . }
Code inserted just after the package declaration. See Section 10.2.7 [Java Differences],
page 135.

[Directive]%code lexer { code . . . }
Code added to the body of a inner lexer class within the parser class. See Sec-
tion 10.2.5 [Java Scanner Interface], page 133.
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[Directive]%% code . . .
Code (after the second %%) appended to the end of the file, outside the parser class.
See Section 10.2.7 [Java Differences], page 135.

[Directive]%{ code . . . %}
Not supported. Use %code import instead. See Section 10.2.7 [Java Differences],
page 135.

[Directive]%define abstract
Whether the parser class is declared abstract. Default is false. See Section 10.2.1
[Java Bison Interface], page 130.

[Directive]%define extends "superclass"
The superclass of the parser class. Default is none. See Section 10.2.1 [Java Bison
Interface], page 130.

[Directive]%define final
Whether the parser class is declared final. Default is false. See Section 10.2.1 [Java
Bison Interface], page 130.

[Directive]%define implements "interfaces"
The implemented interfaces of the parser class, a comma-separated list. Default is
none. See Section 10.2.1 [Java Bison Interface], page 130.

[Directive]%define lex_throws "exceptions"
The exceptions thrown by the yylex method of the lexer, a comma-separated list. De-
fault is java.io.IOException. See Section 10.2.5 [Java Scanner Interface], page 133.

[Directive]%define location_type "class"
The name of the class used for locations (a range between two positions). This class
is generated as an inner class of the parser class by bison. Default is Location. See
Section 10.2.3 [Java Location Values], page 131.

[Directive]%define package "package"
The package to put the parser class in. Default is none. See Section 10.2.1 [Java
Bison Interface], page 130.

[Directive]%define parser_class_name "name"
The name of the parser class. Default is YYParser or name-prefixParser. See
Section 10.2.1 [Java Bison Interface], page 130.

[Directive]%define position_type "class"
The name of the class used for positions. This class must be supplied by the user.
Default is Position. See Section 10.2.3 [Java Location Values], page 131.

[Directive]%define public
Whether the parser class is declared public. Default is false. See Section 10.2.1 [Java
Bison Interface], page 130.

[Directive]%define stype "class"
The base type of semantic values. Default is Object. See Section 10.2.2 [Java Se-
mantic Values], page 131.
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[Directive]%define strictfp
Whether the parser class is declared strictfp. Default is false. See Section 10.2.1
[Java Bison Interface], page 130.

[Directive]%define throws "exceptions"
The exceptions thrown by user-supplied parser actions and %initial-action, a
comma-separated list. Default is none. See Section 10.2.4 [Java Parser Interface],
page 132.



Chapter 11: Frequently Asked Questions 139

11 Frequently Asked Questions

Several questions about Bison come up occasionally. Here some of them are addressed.

11.1 Memory Exhausted

My parser returns with error with a ‘memory exhausted’
message. What can I do?

This question is already addressed elsewhere, See Section 3.4 [Recursive Rules], page 55.

11.2 How Can I Reset the Parser

The following phenomenon has several symptoms, resulting in the following typical ques-
tions:

I invoke yyparse several times, and on correct input it works
properly; but when a parse error is found, all the other calls fail
too. How can I reset the error flag of yyparse?

or
My parser includes support for an ‘#include’-like feature, in
which case I run yyparse from yyparse. This fails
although I did specify %define api.pure.

These problems typically come not from Bison itself, but from Lex-generated scanners.
Because these scanners use large buffers for speed, they might not notice a change of input
file. As a demonstration, consider the following source file, ‘first-line.l’:
%{
#include <stdio.h>
#include <stdlib.h>
%}
%%
.*\n ECHO; return 1;
%%
int
yyparse (char const *file)
{
yyin = fopen (file, "r");
if (!yyin)

exit (2);
/* One token only. */
yylex ();
if (fclose (yyin) != 0)

exit (3);
return 0;

}

int
main (void)
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{
yyparse ("input");
yyparse ("input");
return 0;

}

If the file ‘input’ contains

input:1: Hello,
input:2: World!

then instead of getting the first line twice, you get:

$ flex -ofirst-line.c first-line.l

$ gcc -ofirst-line first-line.c -ll

$ ./first-line

input:1: Hello,
input:2: World!

Therefore, whenever you change yyin, you must tell the Lex-generated scanner to discard
its current buffer and switch to the new one. This depends upon your implementation of
Lex; see its documentation for more. For Flex, it suffices to call ‘YY_FLUSH_BUFFER’ after
each change to yyin. If your Flex-generated scanner needs to read from several input
streams to handle features like include files, you might consider using Flex functions like
‘yy_switch_to_buffer’ that manipulate multiple input buffers.

If your Flex-generated scanner uses start conditions (see section “Start conditions” in
The Flex Manual), you might also want to reset the scanner’s state, i.e., go back to the
initial start condition, through a call to ‘BEGIN (0)’.

11.3 Strings are Destroyed

My parser seems to destroy old strings, or maybe it loses track of
them. Instead of reporting ‘"foo", "bar"’, it reports
‘"bar", "bar"’, or even ‘"foo\nbar", "bar"’.

This error is probably the single most frequent “bug report” sent to Bison lists, but is
only concerned with a misunderstanding of the role of the scanner. Consider the following
Lex code:

%{
#include <stdio.h>
char *yylval = NULL;
%}
%%
.* yylval = yytext; return 1;
\n /* IGNORE */
%%
int
main ()
{
/* Similar to using $1, $2 in a Bison action. */
char *fst = (yylex (), yylval);
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char *snd = (yylex (), yylval);
printf ("\"%s\", \"%s\"\n", fst, snd);
return 0;

}

If you compile and run this code, you get:

$ flex -osplit-lines.c split-lines.l

$ gcc -osplit-lines split-lines.c -ll

$ printf ’one\ntwo\n’ | ./split-lines

"one
two", "two"

this is because yytext is a buffer provided for reading in the action, but if you want to
keep it, you have to duplicate it (e.g., using strdup). Note that the output may depend
on how your implementation of Lex handles yytext. For instance, when given the Lex
compatibility option ‘-l’ (which triggers the option ‘%array’) Flex generates a different
behavior:

$ flex -l -osplit-lines.c split-lines.l

$ gcc -osplit-lines split-lines.c -ll

$ printf ’one\ntwo\n’ | ./split-lines

"two", "two"

11.4 Implementing Gotos/Loops

My simple calculator supports variables, assignments, and functions,
but how can I implement gotos, or loops?

Although very pedagogical, the examples included in the document blur the distinction
to make between the parser—whose job is to recover the structure of a text and to transmit
it to subsequent modules of the program—and the processing (such as the execution) of this
structure. This works well with so called straight line programs, i.e., precisely those that
have a straightforward execution model: execute simple instructions one after the others.

If you want a richer model, you will probably need to use the parser to construct a tree
that does represent the structure it has recovered; this tree is usually called the abstract
syntax tree, or AST for short. Then, walking through this tree, traversing it in various
ways, will enable treatments such as its execution or its translation, which will result in an
interpreter or a compiler.

This topic is way beyond the scope of this manual, and the reader is invited to consult
the dedicated literature.

11.5 Multiple start-symbols

I have several closely related grammars, and I would like to share their
implementations. In fact, I could use a single grammar but with
multiple entry points.

Bison does not support multiple start-symbols, but there is a very simple means to
simulate them. If foo and bar are the two pseudo start-symbols, then introduce two new
tokens, say START_FOO and START_BAR, and use them as switches from the real start-symbol:
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%token START_FOO START_BAR;
%start start;
start: START_FOO foo

| START_BAR bar;

These tokens prevents the introduction of new conflicts. As far as the parser goes, that
is all that is needed.

Now the difficult part is ensuring that the scanner will send these tokens first. If your
scanner is hand-written, that should be straightforward. If your scanner is generated by
Lex, them there is simple means to do it: recall that anything between ‘%{ ... %}’ after the
first %% is copied verbatim in the top of the generated yylex function. Make sure a variable
start_token is available in the scanner (e.g., a global variable or using %lex-param etc.),
and use the following:

/* Prologue. */
%%
%{
if (start_token)
{

int t = start_token;
start_token = 0;
return t;

}
%}
/* The rules. */

11.6 Secure? Conform?

Is Bison secure? Does it conform to POSIX?

If you’re looking for a guarantee or certification, we don’t provide it. However, Bison is
intended to be a reliable program that conforms to the POSIX specification for Yacc. If you
run into problems, please send us a bug report.

11.7 I can’t build Bison

I can’t build Bison because make complains that
msgfmt is not found.
What should I do?

Like most GNU packages with internationalization support, that feature is turned
on by default. If you have problems building in the ‘po’ subdirectory, it indicates
that your system’s internationalization support is lacking. You can re-configure Bison
with ‘--disable-nls’ to turn off this support, or you can install GNU gettext from
ftp://ftp.gnu.org/gnu/gettext/ and re-configure Bison. See the file ‘ABOUT-NLS’ for
more information.

11.8 Where can I find help?

I’m having trouble using Bison. Where can I find help?

ftp://ftp.gnu.org/gnu/gettext/
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First, read this fine manual. Beyond that, you can send mail to help-bison@gnu.org.
This mailing list is intended to be populated with people who are willing to answer questions
about using and installing Bison. Please keep in mind that (most of) the people on the
list have aspects of their lives which are not related to Bison (!), so you may not receive
an answer to your question right away. This can be frustrating, but please try not to honk
them off; remember that any help they provide is purely voluntary and out of the kindness
of their hearts.

11.9 Bug Reports

I found a bug. What should I include in the bug report?
Before you send a bug report, make sure you are using the latest version. Check

ftp://ftp.gnu.org/pub/gnu/bison/ or one of its mirrors. Be sure to include the ver-
sion number in your bug report. If the bug is present in the latest version but not in a
previous version, try to determine the most recent version which did not contain the bug.

If the bug is parser-related, you should include the smallest grammar you can which
demonstrates the bug. The grammar file should also be complete (i.e., I should be able to
run it through Bison without having to edit or add anything). The smaller and simpler the
grammar, the easier it will be to fix the bug.

Include information about your compilation environment, including your operating sys-
tem’s name and version and your compiler’s name and version. If you have trouble compil-
ing, you should also include a transcript of the build session, starting with the invocation
of ‘configure’. Depending on the nature of the bug, you may be asked to send additional
files as well (such as ‘config.h’ or ‘config.cache’).

Patches are most welcome, but not required. That is, do not hesitate to send a bug
report just because you can not provide a fix.

Send bug reports to bug-bison@gnu.org.

11.10 More Languages

Will Bison ever have C++ and Java support? How about insert your
favorite language here?

C++ and Java support is there now, and is documented. We’d love to add other languages;
contributions are welcome.

11.11 Beta Testing

What is involved in being a beta tester?
It’s not terribly involved. Basically, you would download a test release, compile it, and

use it to build and run a parser or two. After that, you would submit either a bug report
or a message saying that everything is okay. It is important to report successes as well as
failures because test releases eventually become mainstream releases, but only if they are
adequately tested. If no one tests, development is essentially halted.

Beta testers are particularly needed for operating systems to which the developers do
not have easy access. They currently have easy access to recent GNU/Linux and Solaris
versions. Reports about other operating systems are especially welcome.

mailto:help-bison@gnu.org
ftp://ftp.gnu.org/pub/gnu/bison/
mailto:bug-bison@gnu.org
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11.12 Mailing Lists

How do I join the help-bison and bug-bison mailing lists?
See http://lists.gnu.org/.

http://lists.gnu.org/
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[Variable]@$
In an action, the location of the left-hand side of the rule. See Section 3.6 [Locations
Overview], page 61.

[Variable]@n
In an action, the location of the n-th symbol of the right-hand side of the rule. See
Section 3.6 [Locations Overview], page 61.

[Variable]$$
In an action, the semantic value of the left-hand side of the rule. See Section 3.5.3
[Actions], page 57.

[Variable]$n
In an action, the semantic value of the n-th symbol of the right-hand side of the rule.
See Section 3.5.3 [Actions], page 57.

[Delimiter]%%
Delimiter used to separate the grammar rule section from the Bison declarations
section or the epilogue. See Section 1.9 [The Overall Layout of a Bison Grammar],
page 28.

[Delimiter]%{code%}
All code listed between ‘%{’ and ‘%}’ is copied directly to the output file uninterpreted.
Such code forms the prologue of the input file. See Section 3.1 [Outline of a Bison
Grammar], page 47.

[Construct]/*...*/
Comment delimiters, as in C.

[Delimiter]:
Separates a rule’s result from its components. See Section 3.3 [Syntax of Grammar
Rules], page 54.

[Delimiter];
Terminates a rule. See Section 3.3 [Syntax of Grammar Rules], page 54.

[Delimiter]|
Separates alternate rules for the same result nonterminal. See Section 3.3 [Syntax of
Grammar Rules], page 54.

[Directive]<*>
Used to define a default tagged %destructor or default tagged %printer.

This feature is experimental. More user feedback will help to determine whether it
should become a permanent feature.

See Section 3.7.7 [Freeing Discarded Symbols], page 67.
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[Directive]<>
Used to define a default tagless %destructor or default tagless %printer.
This feature is experimental. More user feedback will help to determine whether it
should become a permanent feature.
See Section 3.7.7 [Freeing Discarded Symbols], page 67.

[Symbol]$accept
The predefined nonterminal whose only rule is ‘$accept: start $end’, where start
is the start symbol. See Section 3.7.9 [The Start-Symbol], page 70. It cannot be used
in the grammar.

[Directive]%code {code}
[Directive]%code qualifier {code}

Insert code verbatim into output parser source. See Section 3.7.12 [%code], page 72.

[Directive]%debug
Equip the parser for debugging. See Section 3.7.12 [Decl Summary], page 72.

[Directive]%debug
Equip the parser for debugging. See Section 3.7.12 [Decl Summary], page 72.

[Directive]%define define-variable
[Directive]%define define-variable value

Define a variable to adjust Bison’s behavior. See Section 3.7.12 [%define], page 72.

[Directive]%defines
Bison declaration to create a header file meant for the scanner. See Section 3.7.12
[Decl Summary], page 72.

[Directive]%defines defines-file
Same as above, but save in the file defines-file. See Section 3.7.12 [Decl Summary],
page 72.

[Directive]%destructor
Specify how the parser should reclaim the memory associated to discarded symbols.
See Section 3.7.7 [Freeing Discarded Symbols], page 67.

[Directive]%dprec
Bison declaration to assign a precedence to a rule that is used at parse time to resolve
reduce/reduce conflicts. See Section 1.5 [Writing GLR Parsers], page 20.

[Symbol]$end
The predefined token marking the end of the token stream. It cannot be used in the
grammar.

[Symbol]error
A token name reserved for error recovery. This token may be used in grammar rules
so as to allow the Bison parser to recognize an error in the grammar without halting
the process. In effect, a sentence containing an error may be recognized as valid.
On a syntax error, the token error becomes the current lookahead token. Actions
corresponding to error are then executed, and the lookahead token is reset to the
token that originally caused the violation. See Chapter 6 [Error Recovery], page 101.
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[Directive]%error-verbose
Bison declaration to request verbose, specific error message strings when yyerror is
called.

[Directive]%file-prefix "prefix"
Bison declaration to set the prefix of the output files. See Section 3.7.12 [Decl Sum-
mary], page 72.

[Directive]%glr-parser
Bison declaration to produce a GLR parser. See Section 1.5 [Writing GLR Parsers],
page 20.

[Directive]%initial-action
Run user code before parsing. See Section 3.7.6 [Performing Actions before Parsing],
page 67.

[Directive]%language
Specify the programming language for the generated parser. See Section 3.7.12 [Decl
Summary], page 72.

[Directive]%left
Bison declaration to assign left associativity to token(s). See Section 3.7.3 [Operator
Precedence], page 65.

[Directive]%lex-param {argument-declaration}
Bison declaration to specifying an additional parameter that yylex should accept.
See Section 4.6.4 [Calling Conventions for Pure Parsers], page 83.

[Directive]%merge
Bison declaration to assign a merging function to a rule. If there is a reduce/reduce
conflict with a rule having the same merging function, the function is applied to the
two semantic values to get a single result. See Section 1.5 [Writing GLR Parsers],
page 20.

[Directive]%name-prefix "prefix"
Bison declaration to rename the external symbols. See Section 3.7.12 [Decl Summary],
page 72.

[Directive]%no-lines
Bison declaration to avoid generating #line directives in the parser file. See Sec-
tion 3.7.12 [Decl Summary], page 72.

[Directive]%nonassoc
Bison declaration to assign nonassociativity to token(s). See Section 3.7.3 [Operator
Precedence], page 65.

[Directive]%output "file"
Bison declaration to set the name of the parser file. See Section 3.7.12 [Decl Sum-
mary], page 72.
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[Directive]%parse-param {argument-declaration}
Bison declaration to specifying an additional parameter that yyparse should accept.
See Section 4.1 [The Parser Function yyparse], page 79.

[Directive]%prec
Bison declaration to assign a precedence to a specific rule. See Section 5.4 [Context-
Dependent Precedence], page 93.

[Directive]%pure-parser
Deprecated version of %define api.pure (see Section 3.7.12 [%define], page 72), for
which Bison is more careful to warn about unreasonable usage.

[Directive]%require "version"
Require version version or higher of Bison. See Section 3.7.1 [Require a Version of
Bison], page 64.

[Directive]%right
Bison declaration to assign right associativity to token(s). See Section 3.7.3 [Operator
Precedence], page 65.

[Directive]%skeleton
Specify the skeleton to use; usually for development. See Section 3.7.12 [Decl Sum-
mary], page 72.

[Directive]%start
Bison declaration to specify the start symbol. See Section 3.7.9 [The Start-Symbol],
page 70.

[Directive]%token
Bison declaration to declare token(s) without specifying precedence. See Section 3.7.2
[Token Type Names], page 64.

[Directive]%token-table
Bison declaration to include a token name table in the parser file. See Section 3.7.12
[Decl Summary], page 72.

[Directive]%type
Bison declaration to declare nonterminals. See Section 3.7.5 [Nonterminal Symbols],
page 67.

[Symbol]$undefined
The predefined token onto which all undefined values returned by yylex are mapped.
It cannot be used in the grammar, rather, use error.

[Directive]%union
Bison declaration to specify several possible data types for semantic values. See
Section 3.7.4 [The Collection of Value Types], page 66.

[Macro]YYABORT
Macro to pretend that an unrecoverable syntax error has occurred, by making yyparse
return 1 immediately. The error reporting function yyerror is not called. See Sec-
tion 4.1 [The Parser Function yyparse], page 79.
For Java parsers, this functionality is invoked using return YYABORT; instead.
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[Macro]YYACCEPT
Macro to pretend that a complete utterance of the language has been read, by mak-
ing yyparse return 0 immediately. See Section 4.1 [The Parser Function yyparse],
page 79.

For Java parsers, this functionality is invoked using return YYACCEPT; instead.

[Macro]YYBACKUP
Macro to discard a value from the parser stack and fake a lookahead token. See
Section 4.8 [Special Features for Use in Actions], page 85.

[Variable]yychar
External integer variable that contains the integer value of the lookahead token. (In
a pure parser, it is a local variable within yyparse.) Error-recovery rule actions may
examine this variable. See Section 4.8 [Special Features for Use in Actions], page 85.

[Variable]yyclearin
Macro used in error-recovery rule actions. It clears the previous lookahead token. See
Chapter 6 [Error Recovery], page 101.

[Macro]YYDEBUG
Macro to define to equip the parser with tracing code. See Section 8.2 [Tracing Your
Parser], page 113.

[Variable]yydebug
External integer variable set to zero by default. If yydebug is given a nonzero value,
the parser will output information on input symbols and parser action. See Section 8.2
[Tracing Your Parser], page 113.

[Macro]yyerrok
Macro to cause parser to recover immediately to its normal mode after a syntax error.
See Chapter 6 [Error Recovery], page 101.

[Macro]YYERROR
Macro to pretend that a syntax error has just been detected: call yyerror and then
perform normal error recovery if possible (see Chapter 6 [Error Recovery], page 101),
or (if recovery is impossible) make yyparse return 1. See Chapter 6 [Error Recovery],
page 101.

For Java parsers, this functionality is invoked using return YYERROR; instead.

[Function]yyerror
User-supplied function to be called by yyparse on error. See Section 4.7 [The Error
Reporting Function yyerror], page 84.

[Macro]YYERROR_VERBOSE
An obsolete macro that you define with #define in the prologue to request verbose,
specific error message strings when yyerror is called. It doesn’t matter what defini-
tion you use for YYERROR_VERBOSE, just whether you define it. Using %error-verbose
is preferred.
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[Macro]YYINITDEPTH
Macro for specifying the initial size of the parser stack. See Section 5.9 [Memory
Management], page 99.

[Function]yylex
User-supplied lexical analyzer function, called with no arguments to get the next
token. See Section 4.6 [The Lexical Analyzer Function yylex], page 81.

[Macro]YYLEX_PARAM
An obsolete macro for specifying an extra argument (or list of extra arguments) for
yyparse to pass to yylex. The use of this macro is deprecated, and is supported
only for Yacc like parsers. See Section 4.6.4 [Calling Conventions for Pure Parsers],
page 83.

[Variable]yylloc
External variable in which yylex should place the line and column numbers associated
with a token. (In a pure parser, it is a local variable within yyparse, and its address
is passed to yylex.) You can ignore this variable if you don’t use the ‘@’ feature
in the grammar actions. See Section 4.6.3 [Textual Locations of Tokens], page 82.
In semantic actions, it stores the location of the lookahead token. See Section 3.6.2
[Actions and Locations], page 62.

[Type]YYLTYPE
Data type of yylloc; by default, a structure with four members. See Section 3.6.1
[Data Types of Locations], page 61.

[Variable]yylval
External variable in which yylex should place the semantic value associated with
a token. (In a pure parser, it is a local variable within yyparse, and its address
is passed to yylex.) See Section 4.6.2 [Semantic Values of Tokens], page 82. In
semantic actions, it stores the semantic value of the lookahead token. See Section 3.5.3
[Actions], page 57.

[Macro]YYMAXDEPTH
Macro for specifying the maximum size of the parser stack. See Section 5.9 [Memory
Management], page 99.

[Variable]yynerrs
Global variable which Bison increments each time it reports a syntax error. (In a pure
parser, it is a local variable within yyparse. In a pure push parser, it is a member of
yypstate.) See Section 4.7 [The Error Reporting Function yyerror], page 84.

[Function]yyparse
The parser function produced by Bison; call this function to start parsing. See Sec-
tion 4.1 [The Parser Function yyparse], page 79.

[Function]yypstate_delete
The function to delete a parser instance, produced by Bison in push mode; call this
function to delete the memory associated with a parser. See Section 4.5 [The Parser
Delete Function yypstate_delete], page 80. (The current push parsing interface is
experimental and may evolve. More user feedback will help to stabilize it.)
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[Function]yypstate_new
The function to create a parser instance, produced by Bison in push mode; call
this function to create a new parser. See Section 4.4 [The Parser Create Function
yypstate_new], page 80. (The current push parsing interface is experimental and
may evolve. More user feedback will help to stabilize it.)

[Function]yypull_parse
The parser function produced by Bison in push mode; call this function to parse the
rest of the input stream. See Section 4.3 [The Pull Parser Function yypull_parse],
page 80. (The current push parsing interface is experimental and may evolve. More
user feedback will help to stabilize it.)

[Function]yypush_parse
The parser function produced by Bison in push mode; call this function to parse a sin-
gle token. See Section 4.2 [The Push Parser Function yypush_parse], page 80. (The
current push parsing interface is experimental and may evolve. More user feedback
will help to stabilize it.)

[Macro]YYPARSE_PARAM
An obsolete macro for specifying the name of a parameter that yyparse should accept.
The use of this macro is deprecated, and is supported only for Yacc like parsers. See
Section 4.6.4 [Calling Conventions for Pure Parsers], page 83.

[Macro]YYRECOVERING
The expression YYRECOVERING () yields 1 when the parser is recovering from a syntax
error, and 0 otherwise. See Section 4.8 [Special Features for Use in Actions], page 85.

[Macro]YYSTACK_USE_ALLOCA
Macro used to control the use of alloca when the C LALR(1) parser needs to extend
its stacks. If defined to 0, the parser will use malloc to extend its stacks. If defined
to 1, the parser will use alloca. Values other than 0 and 1 are reserved for future
Bison extensions. If not defined, YYSTACK_USE_ALLOCA defaults to 0.
In the all-too-common case where your code may run on a host with a limited stack
and with unreliable stack-overflow checking, you should set YYMAXDEPTH to a value
that cannot possibly result in unchecked stack overflow on any of your target hosts
when alloca is called. You can inspect the code that Bison generates in order to
determine the proper numeric values. This will require some expertise in low-level
implementation details.

[Type]YYSTYPE
Data type of semantic values; int by default. See Section 3.5.1 [Data Types of
Semantic Values], page 56.
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Backus-Naur Form (BNF; also called “Backus Normal Form”)
Formal method of specifying context-free grammars originally proposed by John
Backus, and slightly improved by Peter Naur in his 1960-01-02 committee doc-
ument contributing to what became the Algol 60 report. See Section 1.1 [Lan-
guages and Context-Free Grammars], page 17.

Context-free grammars
Grammars specified as rules that can be applied regardless of context. Thus, if
there is a rule which says that an integer can be used as an expression, integers
are allowed anywhere an expression is permitted. See Section 1.1 [Languages
and Context-Free Grammars], page 17.

Dynamic allocation
Allocation of memory that occurs during execution, rather than at compile time
or on entry to a function.

Empty string
Analogous to the empty set in set theory, the empty string is a character string
of length zero.

Finite-state stack machine
A “machine” that has discrete states in which it is said to exist at each instant
in time. As input to the machine is processed, the machine moves from state
to state as specified by the logic of the machine. In the case of the parser, the
input is the language being parsed, and the states correspond to various stages
in the grammar rules. See Chapter 5 [The Bison Parser Algorithm], page 89.

Generalized LR (GLR)
A parsing algorithm that can handle all context-free grammars, including those
that are not LALR(1). It resolves situations that Bison’s usual LALR(1) al-
gorithm cannot by effectively splitting off multiple parsers, trying all possible
parsers, and discarding those that fail in the light of additional right context.
See Section 5.8 [Generalized LR Parsing], page 97.

Grouping A language construct that is (in general) grammatically divisible; for example,
‘expression’ or ‘declaration’ in C. See Section 1.1 [Languages and Context-Free
Grammars], page 17.

Infix operator
An arithmetic operator that is placed between the operands on which it per-
forms some operation.

Input stream
A continuous flow of data between devices or programs.

Language construct
One of the typical usage schemas of the language. For example, one of the
constructs of the C language is the if statement. See Section 1.1 [Languages
and Context-Free Grammars], page 17.
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Left associativity
Operators having left associativity are analyzed from left to right: ‘a+b+c’
first computes ‘a+b’ and then combines with ‘c’. See Section 5.3 [Operator
Precedence], page 91.

Left recursion
A rule whose result symbol is also its first component symbol; for example,
‘expseq1 : expseq1 ’,’ exp;’. See Section 3.4 [Recursive Rules], page 55.

Left-to-right parsing
Parsing a sentence of a language by analyzing it token by token from left to
right. See Chapter 5 [The Bison Parser Algorithm], page 89.

Lexical analyzer (scanner)
A function that reads an input stream and returns tokens one by one. See
Section 4.6 [The Lexical Analyzer Function yylex], page 81.

Lexical tie-in
A flag, set by actions in the grammar rules, which alters the way tokens are
parsed. See Section 7.2 [Lexical Tie-ins], page 104.

Literal string token
A token which consists of two or more fixed characters. See Section 3.2 [Sym-
bols], page 52.

Lookahead token
A token already read but not yet shifted. See Section 5.1 [Lookahead Tokens],
page 89.

LALR(1) The class of context-free grammars that Bison (like most other parser genera-
tors) can handle; a subset of LR(1). See Section 5.7 [Mysterious Reduce/Reduce
Conflicts], page 95.

LR(1) The class of context-free grammars in which at most one token of lookahead is
needed to disambiguate the parsing of any piece of input.

Nonterminal symbol
A grammar symbol standing for a grammatical construct that can be expressed
through rules in terms of smaller constructs; in other words, a construct that
is not a token. See Section 3.2 [Symbols], page 52.

Parser A function that recognizes valid sentences of a language by analyzing the syntax
structure of a set of tokens passed to it from a lexical analyzer.

Postfix operator
An arithmetic operator that is placed after the operands upon which it performs
some operation.

Reduction Replacing a string of nonterminals and/or terminals with a single nonterminal,
according to a grammar rule. See Chapter 5 [The Bison Parser Algorithm],
page 89.

Reentrant A reentrant subprogram is a subprogram which can be in invoked any number
of times in parallel, without interference between the various invocations. See
Section 3.7.10 [A Pure (Reentrant) Parser], page 70.
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Reverse polish notation
A language in which all operators are postfix operators.

Right recursion
A rule whose result symbol is also its last component symbol; for example,
‘expseq1: exp ’,’ expseq1;’. See Section 3.4 [Recursive Rules], page 55.

Semantics In computer languages, the semantics are specified by the actions taken for each
instance of the language, i.e., the meaning of each statement. See Section 3.5
[Defining Language Semantics], page 56.

Shift A parser is said to shift when it makes the choice of analyzing further input from
the stream rather than reducing immediately some already-recognized rule. See
Chapter 5 [The Bison Parser Algorithm], page 89.

Single-character literal
A single character that is recognized and interpreted as is. See Section 1.2
[From Formal Rules to Bison Input], page 18.

Start symbol
The nonterminal symbol that stands for a complete valid utterance in the lan-
guage being parsed. The start symbol is usually listed as the first nontermi-
nal symbol in a language specification. See Section 3.7.9 [The Start-Symbol],
page 70.

Symbol table
A data structure where symbol names and associated data are stored during
parsing to allow for recognition and use of existing information in repeated uses
of a symbol. See Section 2.5 [Multi-function Calc], page 40.

Syntax error
An error encountered during parsing of an input stream due to invalid syntax.
See Chapter 6 [Error Recovery], page 101.

Token A basic, grammatically indivisible unit of a language. The symbol that describes
a token in the grammar is a terminal symbol. The input of the Bison parser
is a stream of tokens which comes from the lexical analyzer. See Section 3.2
[Symbols], page 52.

Terminal symbol
A grammar symbol that has no rules in the grammar and therefore is gram-
matically indivisible. The piece of text it represents is a token. See Section 1.1
[Languages and Context-Free Grammars], page 17.
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Appendix C Copying This Manual

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
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under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.
A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
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that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.
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B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
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You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
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an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.



164 Bison 2.4.1



Index 165

Index

(Index is nonexistent)



166 Bison 2.4.1


	Introduction
	Conditions for Using Bison
	GNU GENERAL PUBLIC LICENSE
	The Concepts of Bison
	Languages and Context-Free Grammars
	From Formal Rules to Bison Input
	Semantic Values
	Semantic Actions
	Writing GLR Parsers
	Using GLR on Unambiguous Grammars
	Using GLR to Resolve Ambiguities
	GLR Semantic Actions
	Considerations when Compiling GLR Parsers

	Locations
	Bison Output: the Parser File
	Stages in Using Bison
	The Overall Layout of a Bison Grammar

	Examples
	Reverse Polish Notation Calculator
	Declarations for rpcalc
	Grammar Rules for rpcalc
	Explanation of input
	Explanation of line
	Explanation of expr

	The rpcalc Lexical Analyzer
	The Controlling Function
	The Error Reporting Routine
	Running Bison to Make the Parser
	Compiling the Parser File

	Infix Notation Calculator: calc
	Simple Error Recovery
	Location Tracking Calculator: ltcalc
	Declarations for ltcalc
	Grammar Rules for ltcalc
	The ltcalc Lexical Analyzer.

	Multi-Function Calculator: mfcalc
	Declarations for mfcalc
	Grammar Rules for mfcalc
	The mfcalc Symbol Table

	Exercises

	Bison Grammar Files
	Outline of a Bison Grammar
	The prologue
	Prologue Alternatives
	The Bison Declarations Section
	The Grammar Rules Section
	The epilogue

	Symbols, Terminal and Nonterminal
	Syntax of Grammar Rules
	Recursive Rules
	Defining Language Semantics
	Data Types of Semantic Values
	More Than One Value Type
	Actions
	Data Types of Values in Actions
	Actions in Mid-Rule

	Tracking Locations
	Data Type of Locations
	Actions and Locations
	Default Action for Locations

	Bison Declarations
	Require a Version of Bison
	Token Type Names
	Operator Precedence
	The Collection of Value Types
	Nonterminal Symbols
	Performing Actions before Parsing
	Freeing Discarded Symbols
	Suppressing Conflict Warnings
	The Start-Symbol
	A Pure (Reentrant) Parser
	A Push Parser
	Bison Declaration Summary

	Multiple Parsers in the Same Program

	Parser C-Language Interface
	The Parser Function yyparse
	The Push Parser Function yypush_parse
	The Pull Parser Function yypull_parse
	The Parser Create Function yystate_new
	The Parser Delete Function yystate_delete
	The Lexical Analyzer Function yylex
	Calling Convention for yylex
	Semantic Values of Tokens
	Textual Locations of Tokens
	Calling Conventions for Pure Parsers

	The Error Reporting Function yyerror
	Special Features for Use in Actions
	Parser Internationalization

	The Bison Parser Algorithm
	Lookahead Tokens
	Shift/Reduce Conflicts
	Operator Precedence
	When Precedence is Needed
	Specifying Operator Precedence
	Precedence Examples
	How Precedence Works

	Context-Dependent Precedence
	Parser States
	Reduce/Reduce Conflicts
	Mysterious Reduce/Reduce Conflicts
	Generalized LR (GLR) Parsing
	Memory Management, and How to Avoid Memory Exhaustion

	Error Recovery
	Handling Context Dependencies
	Semantic Info in Token Types
	Lexical Tie-ins
	Lexical Tie-ins and Error Recovery

	Debugging Your Parser
	Understanding Your Parser
	Tracing Your Parser

	Invoking Bison
	Bison Options
	Option Cross Key
	Yacc Library

	Parsers Written In Other Languages
	C++ Parsers
	C++ Bison Interface
	C++ Semantic Values
	C++ Location Values
	C++ Parser Interface
	C++ Scanner Interface
	A Complete C++ Example
	Calc++ --- C++ Calculator
	Calc++ Parsing Driver
	Calc++ Parser
	Calc++ Scanner
	Calc++ Top Level


	Java Parsers
	Java Bison Interface
	Java Semantic Values
	Java Location Values
	Java Parser Interface
	Java Scanner Interface
	Special Features for Use in Java Actions
	Differences between C/C++ and Java Grammars
	Java Declarations Summary


	Frequently Asked Questions
	Memory Exhausted
	How Can I Reset the Parser
	Strings are Destroyed
	Implementing Gotos/Loops
	Multiple start-symbols
	Secure? Conform?
	I can't build Bison
	Where can I find help?
	Bug Reports
	More Languages
	Beta Testing
	Mailing Lists

	Bison Symbols
	Glossary
	Copying This Manual
	Index

