1 <4<

CON 2018

Bug classification using r2
beebug: A tool for checking exploitability

Andrea Sindoni
() W @invictus1306

‘14 <

CON 2018

J Senior security researcher

— Specialized in reverse engineering and exploit
development

4 Have been working professionally in vulnerability
research for more than 8 years

I have never found any web vulnerability ©

Twitter: @invictus1306

Disclaimer: All the work presented here 1s mine (not of my employer)

@invictus1306 2

Summary gﬂﬁ

= Motivation

" Common vulnerabilities
= Exploitable crashes

" Tool and usage

" Graph generation

" Demo

" Future direction

" Thank you

@invictus1306 3

Motivation

Motivation g@ﬁ

» If you work as vulnerability researcher, often you have to
analyze a crash in order to understand:
» what type of vulnerability you have found
» whether it is exploitable
» How to quickly determine if a crash in a target is
potentially exploitable
» Existing similat tools:
> exploitable.py for gdb
> lexploitable for WinDbg
» However, the tool presented here is easy to integrate into a
automated script

@invictus1306 5

Common Vulnerabilities

Common Vulnerabilities 144

* Heap Overtlow (e.g, CVE 2018-11625)

* UAF (e.g, CVE-2018-11624)

* Stack Overtlow (e.g, CVE-2018-12327)

* Integer Overtlow (e.g, CVE-2017-15587)
* Type contusion (e.g, CVE-2018-4944)

* Out-of-bounds (e.g., CVE-2018-6149)

@invictusl1306 7

Common Vulnerabilities 144

* Stack Overtlow - CVE-2018-12327 (ntpq 4.2.8p11 Local BufferOverflow)

root@invictus1306-VirtualBox:/home/invictus1306/Down10a(s/ntp-4(?.8p11# ./ntpdc/ntpdc -4 ["python -c 'print "A" * 300'"]
ame or service not known

** stack smashing detected ***: . /ntpdc/ntpdc terminated

Aborted (core dumped)

HUC c L L 21| A - LOJ - U
#define [IENHOSTNAME rs long */

static 1int

openhost(
const char *hname,
int fam

)

const char svc[] = "ntp"; C

char temphost[LENHOSTNAME]; raSh!!
int a_info, 1i;

struct addrinfo hints, *ai;

sockaddr_u addr;

size_t octets;

ranictar ~anct ~har %Fne

/i
* We need to get by the [] if they were entered

J,
cp = hname;

if (*ep == '[") {
Cp++;
for (i=-f:;_*cn n 1=_"1": cp++, 1++)
name[1i]
if (*cp=="7")
name[i]

@invictusl1l306 8

Common Vulnerabilities 144

* Some crashes are not easy to classify and many times these are
classified as Null Pointer Dereference that lead to “Denial of Service’

* A Null Pointer Dereference vulnerability could also potentially lead to
code execution.

>

fﬁ SAPCAR Heap Buffer Overflow: From crash to

aell cxploit

1. Introduction CORE_abx

In this blog post, we will cover the analysis and exploitation of a

simple heap buffer overflow found in SAPCAR a few weeks ago.

SAP published security note #2441560 classifying the issue as "Potential Denial of Service" [This post is our attempt to

Lo aaa tlo oL al e - L dala loo 2t o1 Lai. L i Lo la | H 1
ST U T AT T U T S UL ULy PO ooTTC U T T OU T OOtV e Ty OOy T At TITe Ve T TTC TAaT TS tO pl’OVIde a (hOperHyl)

cohesive example for other beginners that might be interested in binary exploitation. We will see one possible approach
to make sense out of a few hundred crashes obtained through fuzzing how to identify the root cause of the bug. and how
to determine its exploitability. Afterwards, we will develop an exploit using the old and well known file pointer overwrite

technique. The last section will go into some more detail about a relevant mitigation implemented in glibc 2.24.

@invictus1306 9

‘14 <

Common Vulnerabilities CON 2018

* Sometime a crash report 1s rejected because it seems to be not

exploitable

o FROM CRASH TO EXPLOIT: CVE-2015-6086 — OUT OF BOUND READ/ASLR
BYPASS

n Crash to Exploit: CVE-2015-6086 — Out of Bound Read/ASLR Bypass

INTRODUCTION

This is a story of an Out of Bound Read bugin Internet Explorer 9-11 . This is almost 5 years old bug

nich got discovered in April 2015. It is a very interesting bug, at least from my perspective, because it was
rejected almost 4-5 times by Zero Day Initiative (ZDI) stating that it's not exploitable
My SVG fuzzer was hitting a crash continuously, at first, the bug looked like usual Use after Free as it was
trying to read Invalid Memory . But after triaging it turned out to be Out of Bound Read bug. | submitted this

bug to ZDI and they rejected it at first stating that they are not able to reproduce it. Later they rejected

* For example if a vulnerability is reported as Denial of Service, the
patch may not provide the proper mitigation

* The same vulnerability might be able to give code execution 1f
analyzed/exploited properly

@invictus1306 10

Exploitable crashes

Exploitable crashes gﬂﬁ

Some crashes that are generally exploitable:
* Stack overtlow
* Crash on Program Counter
* Crash on branch
* Crash on write memory
* Heap vulnerabilities
* Read access violation ??

@invictus1306 12

Exploitable crashes g@ﬁ

Stack overflow (1/2)

When a stack buffer overflow occurs — e.g., overwriting control information
such as a return address - libc (depending on the ger version) generates a signal and
stops the target:

% stack smashing detected ***: ./stack overflow terminated

Aborted (core dumped)

Generally this type of stack buffer overflow 1s considered exploitable — e.g., the size of the
buffer is fixed and there is weak bounds checking

How is it possible to detect?

__Slack_chk_fail terminates a function in case of stack overflow:

[0x7feadeSeed28]> pd -1 @ sym.exploit me+123

eB5ffe call sym.imp._ stack chk fail

@invictus1306 13

Exploitable crashes gﬂﬁ

Stack overflow (2/2)

Look at the backtrace:

*** stack smashing detected ***: | /stack overflow terminated

— T

==13765== Process terminating with default action of signal 6 (SIGABRT)
==13765== at Ox4E6F428: raise (raise.c:54)

==13765== by 0x4E71029: abort (abort.c:89)

==alz i by Ox4EB17E9: __ libc_message (libc_fatal.c:175)

==z ila=—= bv 0x4F5315B: fortifv fail (fortifv fail.c:37)

==13765== by 0x4F530FF: _ stack_chk_fail (stack_chk_fail.c:28)
==13765== DY UX40U0l0: explLoll _me (Lln Jjnome;ilnvictusisvojuocuments/r2conf/init_test/mytests/stack overflow)
== Zb=——= by 0x400040: ??? (in /home/invictus1306/Documents/r2conf/init_test/mytests/stack_overflow)
==l oiie== by OxFFFOOO3F7: 22?
—C T by OxFFFFFFFF: 22?
==13765== by 0x40063F: ??? (in /home/invictus1306/Documents/r2conf/init_test/mytests/stack overflow)
by 0x4E5A82F: (below main) (libc-start.c:291)

Looking at the backtrace it 1s possible to understand that the target program called the
function __stack_chk_fail, which terminated it with the SIGABRT signal.

Another thing that is possible to see in the backtrace is the presence of the __fortify_fail
function, it means that the StackGuard patch to GCC is there.

gec version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntul~16.04.9)

@invictus1306 14

‘14 <

Exploitable crashes CON 2018

Crash on Program Counter (1/2)

If there 1s a SIGSEGYV signal and the address of the program counter is equal to the address
of the memory error, this could tell us that the PC is tainted and can be controlled by an

attacker.

Generally this type of crash is considered exploitable — e.g., the presence of a call
instruction with a bad argument.

In the following case we have a SIGSEGYV signal and we can see that the address of the
“memory error’ 1s equal to the “program counter’ address.

[0x7f10e7b52c30]> dc
child stopped with signal 11
L 11 errno=0 oddr=0x00601038 code=2 ret=0

0x00601038]> |]

[0x00601038]> dr rip
Ix00601038

AvRfRacemdaann .
(W Aviviely J 2O -

Let’s go deeper...

@invictus1306 15

Exploitable crashes gﬂﬁ

Crash on Program Counter (2/2)

Let’s see the content of the current instruction:

Search your computer

Py 1

sp: Ox0
Ox4004f1 sp: Ox7ffdeg3gifas
0x7f10e77a8830 sp: 0x7ffdes8381fcs8
Ox7f10e7b627cb sp: Ox7ffdes382058
0x400409 sp: 0x7ffde8382088
0x00601038]> pd -1 @ 0x4004f1
de

0 [??] obj.foo obj.foo0

0 [sym.main] main+27

32 [??] ri11+240

144 [??] sym.dl_rtld_di_serinfo+29051
48 [?2?] entry0+41

call rax

As we suspected there 1s a call statement, which has rax as parameter, this could mean
that the rax value could be controlled by the attacker and as consequence it could be

exploitable.

@invictusl1l306

16

‘14 <

Exploitable crashes CON 2018

Crash on Branch

A crash on a branch instruction could indicate that the control flow could be controlled by the
attacker .

For example, in that case:

[0x004004e1]> dc
chlld stopped with signal 11
[+] SIGNAL 11 errno=0 addr=0x0fffffff code=1 ret=0

1425 . call qword [oxfffffff]

We have a SIGSEGYV signal, and the current instruction is a call to an address that 1s not
mapped in the memory.

@invictus1306 17

Exploitable crashes gﬂﬁ

Crash on write memory

An access violation on a destination operand could indicate a write access violation.

[0x7f2f01f32c30]> dc
child stopped with signal 11
GNAL 11 errno=0 addr=0x00010000 code=1 ret=0

0x004004eb]> pd 1

L]

€60041 mov byte [rax], 0x41

Generally this type of crash is considered exploitable — e.g., an attacker may control the
write address/value.

Note: The faulting address 1s equal to the destination operand value:

Faulting address: 0x10000
Fault instruction: mov byte [rax], 0x41
rax = 0x10000

@invictus1306 18

‘14 <

Exploitable crashes CON 2018

Heap vulnerabilities

The newer version of glibc added a lot of sanity checks for chunk headers:

[#0] ox7ffff7a42428 - Name: (sig=0x6)

[#1] ox7ffff7a4402a - Name: ()

[#2] ox7ffff7a847ea - Name: (do_abort=0x2, fmt=0x7ffff7boded8 "*** Error in "%s': %s: Ox¥s ***\n")

[#3] ex7ffff7a8d37a - Name: (ar_ptr=<optimized out>, ptr=<optimized out>, str=0x7ffff7b9df5e 'free(): invalid next size (fast)", action=0x3)
[#4] ox7ffff7a8d37a - Name: (av=<optimized out>, p=<optimized out>, have_lock=0x0)

[#5] ox7ffff7a9153c - Name: (mem=<optimized out>)

[#6] 0x4005f5 - Name: ()

Ox7ffff7a42428 - Name: (sig=0x6)
Ox7ffff7a4402a - Name: 0
Ox7ffff7a847ea - Name: (do_abort=0x2, fmt=0x7ffff7b9ded8 "*** Error in "%s': %s: Ox%s ***\n")

0x7ffff7a8d37a - Name: ‘av=<optimized out>, p=<optimized out>, have lock=0x0)
Ox7ffff7a9153c - Name: (mem=<optimized out>)

[#0]
3
[43] OXTFFFFTa8037a - Name: (ar_ptr=<optimized out>, ptr=<optimized out>, str=0x7ffff7b9dfad "double free or corruption (fasttop)", act
[#4]
[#5]
[#6] 0x400762 - Name: nain()

Looking at the backtrace it 1s possible to see the target program calls the function _sn# free, and
also see the malloc_printerr function contains the descriptive string.

This helps the analyzer to understand the type of vulnerability.

@invictus1306 19

Exploitable crashes gﬂﬁ

Read access violation that leads to code execution

As mentioned, sometimes a simple read access violation vulnerability could lead to code
execution.

Program received signal SIGSEGV, Segmentation fault.
0x0000000000401c10 in main ()

UX4ULIC15 <mdln+11y9> UX, UWUKU FIK LI DpP-uUxos]
Ox401c17 <main+1203> rdi, rdx

Ox401cla <main+1206> rax

Ox401clc <main+1208> eax, xmmo@

0x401c20 <main+1212> DWORD PTR [rbp-0x84], eax

The “exploitable” gdb plugin tell us the crash is PROBABLY_NOT_EXPLOITABLE

gef>» exploitable

__main__:99: UserWarning: GDB v7.11 may not support required Python API

Description: Access violation near NULL on source operand

Short description: SourceAvNearNull (16/22)

Hash: c0f280e80c376bd06c228bee bzle541.CUTZBUeBUCS/oDAVO 228bee2621e541

Exploitability Classification: PROBABLY_NOT_EXPLOITABLE

Explanation: The target crashe =22.22n77272 0 2ta%i22.2 an address matching the source operand of the current instruction. This likely indi
cates a read access violation, which may mean the application crashed on a simple NULL dereference to data structure that has no immediate ef
fect on control of the processor.

Other tags: AccessViolation (21/22)

@invictus1306 20

Exploitable crashes gﬂﬁ

Read access violation that leads to code execution

Instead this is exploitable, in this case the rax register is controllable from an attacker.

@invictus1306 21

Tool and usage

Tool and usage g@ﬁ

New tool released as open source:

beebug

hwtps://github.com/invictus1306/beebug

Some features:

* Classify if a crash could be exploitable:
* Stack overflow on libc

Crash on Program Counter
Crash on branch

* Crash on write memory
* Heap vulnerabilities
* Read access violation (some exploitable cases)

* Help to analyze a crash (graph view)

@invictus1306 23

Tool and usage g@ﬁ

Help view

root@invictus1306-VirtualBox: /home/invictus1306/Documents/r2conf/beebug/beebug# python3 beebug.py -h
usage: beebug.py [-h] -t TARGET [-a TARGETARGS] [-f FILE] [-g GRAPH]

optional arguments:
-h, --help show this help message and exit
-t TARGET, --target TARGET
target program to analyze
-a TARGETARGS, --targetargs TARGETARGS
arguments for the target program
-f FILE, --file FILE 1input file
-g GRAPH, --graph GRAPH
generate the graph

Output example backtrace
O 0x601038 : Ox0 [2?2] obj.foo obj.foo0
1 0x4004f1 : Ox7fff447da688 [sym.main] main+27
2 0Ox7fba9cdof830 : Ox7fff447da6a8 [22] ri1+240
3 0x7fba9d1597cb : Ox7fff447da738 [2?2] sym.dl_rtld_di_serinfo+29051
4 0x400409 : Ox7fff447da768 [2?] entry6+41
registers

0x0060106038
OxXO000000600606
rcx Ox0000OOO6
rdx Ox7fff447da798
r8 0x0040060570
ro Ox7fba9d159abo
rio OxX00000846
rii 0x7fba9cdof740
riz Ox004003e0
ri3 Ox7fff447da780
ri4g

rax
rbx

@invictus1306 24

Tool and usage g@ﬁ

* Example with CVE-2018-12327 (ntpq 4.2.8p11 Local Buffer Overflow)

root@invictus1306-VirtualBox: /home/invictus1306/Documents/r2conf/beebug/beebug# python3 beebug.py -t /home/invictus1306/Do
wnloads/ntp-4.2.8p11/ntpdc/ntpdc -a "-4 ['python -c 'print "A" * 300'"]"

Process with PID 5017 started...

File dbg:///home/invictus1306/Downloads/ntp-4.2.8p11/ntpdc/ntpdc -4 [AAA

AA

AA

AAA] reopened in read-write mode

= attach 5017 5017

WARNING: bin_strings buffer is too big (Oxffffaale5556a5f8). Use -zzz or set bin.maxstrbuf (RABIN2_MAXSTRBUF) in r2 (rabin
2)

WARNING: bin_strings buffer is too big (Oxffffaale5555a258). Use -zzz or set bin.maxstrbuf (RABIN2_MAXSTRBUF) in r2 (rabin
2)

Cannot find function 'entry@' at 0x00007bdo

Name or service not known

*** stack smashing detected ***: [home/invictus1306/Downloads/ntp-4.2.8p11/ntpdc/ntpdc terminated

child stopped with signal 6

[+] SIGNAL 6 errno=0 addr=0x00001399 code=-6 ret=0

backtrace

0 0x7fc8112a8428 sp: 0x0 0 [77]

1 0x7fc8112aa02a sp: Ox7ffcbfab54e8 0 [?2?] sym.abort+362

2 0x7fc8112ea7ea sp: Ox7ffcbfab5618 304 [??] sym.fsetlocking+778
3 0x7fc8112ea5ce sp: Ox7ffcbfab56a8 144 [??] sym.fsetlocking+238

@invictus1306 25

Graph generation

Graph generation 14 <

CON 2018

* As already mentioned, some crashes are not easy to classify
* With beebug there 1s the possibility to have a runtime
graph view
* The sequence of the executed functions will be printed out
* This could help the analyzer to have a better understanding
of what 1s happening
* Por every node in the graph this 1s the label:
* Function name [start_address — end_address]
* The edge, contains the number in the sequence of
execution

@invictusl1l306 7

Graph generation gﬂﬁ

Graph generation

entry0 [0x4003e0 - 0x400407] entryl.init [0x4004b0 - 0x4004d1]
sym.imp.__libc_start_main [0x4003c0 - 0x4003c0] sym.__libc_csu_init [0x400500 - 0x400563] main [0x4004d6 - 0x400417] sym.register_tm_clones [0x400450 - 0x400480]

3 crash details

Exploitable: PROBABLY EXPLOITABLE
crash instruction:
0x601038 - add byte [rax], al
backtrace:
0 0x601038 sp: 0x0 0 [??] obj.foo obj.foo0
1 0x4004f1 sp: Ox7ffeb98cal78 0 [sym.main] main+27
2 0x7f13fd941830 sp: Ox7ffeb98cald98 32 [??] sym.libc_start_main+240
3 0x400409 sp: Ox7ffeb98ca258 192 [??] entry0+41
registers:
rax = 0x00601038
rbx =0x00000000
rcx = 0x00000000
rdx = 0x7ffeb98ca288
r8 =0x00400570
section_end..rela.plt [0x400390 - 0x4003a6] r9 = 0x7f13fdcfbab0
r10 =0x00000846
r1l =0x7f13fd941740
r12 = 0x004003e0
r13 =0x7ffeb98ca270
r14 =0x00000000
r15=0x00000000
rsi = 0x7ffeb98ca278
rdi = 0x0000000a
rsp = 0x7ffeb98cal78
rbp = 0x7ffeb98cal90
rip = 0x00601038
rflags = 0x00010202
orax = Oxffffffffffffff

@invictusl1l306

DEMO

Future direction

Future direction gﬂﬁ

* Support ditferent architectures

* Improvement of the graph view (based on
radare?)

* Analyze core dumps (based on radare2)

* Use instrumentation for the graph view
generation

beebug

https://github.com/invictus1306/beebug

@invictus1306 31

Thank you!

Andrea Sindoni
() W @invictus1306

