
Bug classification using r2
beebug: A tool for checking exploitability

Andrea Sindoni
@invictus1306

Who Am I ?

@invictus1306 2

q Senior security researcher
q Specialized in reverse engineering and exploit

development
q Have been working professionally in vulnerability

research for more than 8 years
q I have never found any web vulnerability J

Twitter: @invictus1306

Disclaimer: All the work presented here is mine (not of my employer)

Summary

@invictus1306 3

§ Motivation
§ Common vulnerabilities
§ Exploitable crashes
§ Tool and usage
§ Graph generation
§ Demo
§ Future direction
§ Thank you

4

Motivation

Motivation

@invictus1306 5

Ø If you work as vulnerability researcher, often you have to
analyze a crash in order to understand:
Ø what type of vulnerability you have found
Ø whether it is exploitable

ØHow to quickly determine if a crash in a target is
potentially exploitable

ØExisting similar tools:
Ø exploitable.py for gdb
Ø !exploitable for WinDbg

ØHowever, the tool presented here is easy to integrate into a
automated script

6

Common Vulnerabilities

Common Vulnerabilities

@invictus1306 7

• Heap Overflow (e.g., CVE 2018-11625)
• UAF (e.g., CVE-2018-11624)
• Stack Overflow (e.g., CVE-2018-12327)
• Integer Overflow (e.g., CVE-2017-15587)
• Type confusion (e.g., CVE-2018-4944)
• Out-of-bounds (e.g., CVE-2018-6149)

Common Vulnerabilities

@invictus1306 8

• Stack Overflow - CVE-2018-12327 (ntpq 4.2.8p11 Local BufferOverflow)

Crash!!

c

Common Vulnerabilities

@invictus1306 9

• Some crashes are not easy to classify and many times these are
classified as Null Pointer Dereference that lead to “Denial of Service”

• A Null Pointer Dereference vulnerability could also potentially lead to
code execution.

Common Vulnerabilities

@invictus1306 10

• Sometime a crash report is rejected because it seems to be not
exploitable

• For example if a vulnerability is reported as Denial of Service, the
patch may not provide the proper mitigation

• The same vulnerability might be able to give code execution if
analyzed/exploited properly

11

Exploitable crashes

Exploitable crashes

@invictus1306 12

Some crashes that are generally exploitable:
• Stack overflow
• Crash on Program Counter
• Crash on branch
• Crash on write memory
• Heap vulnerabilities
• Read access violation ??

Exploitable crashes

@invictus1306 13

Stack overflow (1/2)

__stack_chk_fail terminates a function in case of stack overflow:

When a stack buffer overflow occurs – e.g., overwriting control information
such as a return address - libc (depending on the gcc version) generates a signal and
stops the target:

How is it possible to detect?

Generally this type of stack buffer overflow is considered exploitable – e.g., the size of the
buffer is fixed and there is weak bounds checking

Exploitable crashes

@invictus1306 14

Stack overflow (2/2)
Look at the backtrace:

Looking at the backtrace it is possible to understand that the target program called the
function __stack_chk_fail, which terminated it with the SIGABRT signal.

Another thing that is possible to see in the backtrace is the presence of the __fortify_fail
function, it means that the StackGuard patch to GCC is there.

gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.9)

Exploitable crashes

@invictus1306 15

Crash on Program Counter (1/2)
If there is a SIGSEGV signal and the address of the program counter is equal to the address
of the memory error, this could tell us that the PC is tainted and can be controlled by an
attacker.

Generally this type of crash is considered exploitable – e.g., the presence of a call
instruction with a bad argument.

In the following case we have a SIGSEGV signal and we can see that the address of the
“memory error” is equal to the “program counter” address.

Let’s go deeper…

Exploitable crashes

@invictus1306 16

Crash on Program Counter (2/2)
Let’s see the content of the current instruction:

Uhmm NULL bytes, but who is the caller?

As we suspected there is a call statement, which has rax as parameter, this could mean
that the rax value could be controlled by the attacker and as consequence it could be
exploitable.

Exploitable crashes

@invictus1306 17

Crash on Branch
A crash on a branch instruction could indicate that the control flow could be controlled by the
attacker .

For example, in that case:

We have a SIGSEGV signal, and the current instruction is a call to an address that is not
mapped in the memory.

Exploitable crashes

@invictus1306 18

Crash on write memory
An access violation on a destination operand could indicate a write access violation.

Generally this type of crash is considered exploitable – e.g., an attacker may control the
write address/value.

Note: The faulting address is equal to the destination operand value:

Faulting address: 0x10000
Fault instruction: mov byte [rax], 0x41
rax = 0x10000

Exploitable crashes

@invictus1306 19

Heap vulnerabilities
The newer version of glibc added a lot of sanity checks for chunk headers:

Looking at the backtrace it is possible to see the target program calls the function _int_free, and
also see the malloc_printerr function contains the descriptive string.

This helps the analyzer to understand the type of vulnerability.

Exploitable crashes

@invictus1306 20

Read access violation that leads to code execution
As mentioned, sometimes a simple read access violation vulnerability could lead to code
execution.

The “exploitable” gdb plugin tell us the crash is PROBABLY_NOT_EXPLOITABLE

Exploitable crashes

@invictus1306 21

Read access violation that leads to code execution
Instead this is exploitable, in this case the rax register is controllable from an attacker.

22

Tool and usage

Tool and usage

@invictus1306 23

• Classify if a crash could be exploitable:
• Stack overflow on libc
• Crash on Program Counter
• Crash on branch
• Crash on write memory
• Heap vulnerabilities
• Read access violation (some exploitable cases)

• Help to analyze a crash (graph view)

New tool released as open source:

Some features:

https://github.com/invictus1306/beebug

Tool and usage

@invictus1306 24

Help view

Output example

Tool and usage

@invictus1306 25

• Example with CVE-2018-12327 (ntpq 4.2.8p11 Local Buffer Overflow)

26

Graph generation

Graph generation

@invictus1306 27

• As already mentioned, some crashes are not easy to classify
• With beebug there is the possibility to have a runtime

graph view
• The sequence of the executed functions will be printed out
• This could help the analyzer to have a better understanding

of what is happening
• For every node in the graph this is the label:
• Function name [start_address – end_address]
• The edge, contains the number in the sequence of

execution

Graph generation

@invictus1306 28

Graph generation

29

DEMO

30

Future direction

Future direction

@invictus1306 31

• Support different architectures
• Improvement of the graph view (based on

radare2)
• Analyze core dumps (based on radare2)
• Use instrumentation for the graph view

generation

https://github.com/invictus1306/beebug

Thank you!

Andrea Sindoni
@invictus1306

